Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

2-Way Driven Compressor for Hybrid Vehicle Climate Control System

2004-03-08
2004-01-0906
The environment is one of the most important issues currently facing the world and the automobile industry is required to respond with eco-cars. To meet this requirement, the hybrid vehicle is one of the most optimal solutions. The hybrid system automatically stops engine idling (idling stop), or stops the engine during deceleration to recover energy. The engine stop however creates a problem concerning the vehicle's climate control system. Because the conventional climate control system incorporates a compressor driven by engine belt, there is almost no cooling performance while the engine is stopped. Until now, when a driver needed more cooling comfort the engine has been switched back on as a compromise measure. To realize cabin comfort that is consistent with fuel saving, a 2-way driven compressor has been developed that can be driven both by engine belt while the engine is running and by electric motor when the engine is stopped.
Technical Paper

A Comparison of Methods for Evaluating Automatic Transmission Fluid Effects on Friction Torque Capacity - A Study by the International Lubricant Standardization and Approval Committee (ILSAC) ATF Subcommittee

1998-10-19
982672
As part of the International Lubricant Standardization and Approval Committee's (ILSAC) goal of developing a global automatic transmission fluid (ATF) specification, members have been evaluating test methods that are currently used by various automotive manufacturers for qualifying ATF for use in their respective transmissions. This report deals with comparing test methods used for determining torque capacity in friction systems (shifting clutches). Three test methods were compared, the Plate Friction Test from the General Motors DEXRON®-III Specification, the Friction Durability Test from the Ford MERCON® Specification, and the Japanese Automotive Manufacturers Association Friction Test - JASO Method 348-95. Eight different fluids were evaluated. Friction parameters used in the comparison were breakaway friction, dynamic friction torque at midpoint and the end of engagement, and the ratio of end torque to midpoint torque.
Technical Paper

A SEA-Based Optimizing Approach for Sound Package Design

2003-05-05
2003-01-1556
Statistical Energy Analysis (SEA) is a promising tool for developing an efficient sound package design for reducing airborne interior noise at high frequencies. The optimal sound package, however, is not directly predicted by using the SEA vehicle model alone and therefore requires parametric studies of sound package configurations. This paper describes an effective method for using SEA modeling to achieve the desired interior noise level targets. A mathematical model, expressed by one equation, is derived on the assumption that the directions of the power flows are known in the SEA model. This equation describes the relationship between sound package properties and the resulting interior noise level. Using the relationship between weight and performance of sound package, an efficient configuration can be determined. The predicted sound pressure level of the vehicle interior with the optimized sound package correlated well to the experimental data for the case presented in this paper.
Technical Paper

A Study of Cervical Spine Kinematics and Joint Capsule Strain in Rear Impacts using a Human FE Model

2006-11-06
2006-22-0020
Many efforts have been made to understand the mechanism of whiplash injury. Recently, the cervical facet joint capsules have been focused on as a potential site of injury. An experimental approach has been taken to analyze the vertebral motion and to estimate joint capsule stretch that was thought to be a potential cause of pain. The purpose of this study is to analyze the kinematics of the cervical facet joint using a human FE model in order to better understand the injury mechanism. The Total Human Model for Safety (THUMS) was used to visually analyze the local and global kinematics of the spine. Soft tissues in the neck were newly modeled and introduced into THUMS for estimating the loading level in rear impacts. The model was first validated against human test data in the literature by comparing vertebrae motion as well as head and neck responses. Joint capsule strain was estimated from a maximum principal strain output from the elements representing the capsule tissues.
Technical Paper

A Study of Driver Injury Mechanism in High Speed Lateral Impacts of Stock Car Auto Racing Using a Human Body FE Model

2011-04-12
2011-01-1104
This paper analyzed the mechanisms of injury in high speed, right-lateral impacts of stock car auto racing, and interaction of the occupant and the seat system for the purpose of reducing the risk of injury, primarily rib fractures. Many safety improvements have been made to stock car racing recently, including the Head and Neck Support devices (HANS®), the 6-point restraint harnesses, and the implementation of the SAFER Barrier. These improvements have contributed greatly to mitigating injury during the race crash event. However, there is still potential to improve the seat structure and the understanding of the interaction between the driver and the seat in the continuation of making racing safety improvements. This is particularly true in the case of right-lateral impacts where the primary interaction is between the seat supports and the driver and where the chest is the primary region of injury.
Technical Paper

A Study of Knee Joint Kinematics and Mechanics using a Human FE Model

2005-11-09
2005-22-0006
Posterior translation of the tibia with respect to the femur can stretch the posterior cruciate ligament (PCL). Fifteen millimeters of relative displacement between the femur and tibia is known as the Injury Assessment Reference Value (IARV) for the PCL injury. Since the anterior protuberance of the tibial plateau can be the first site of contact when the knee is flexed, the knee bolster is generally designed with an inclined surface so as not to directly load the projection in frontal crashes. It should be noted, however, that the initial flexion angle of the occupant knee can vary among individuals and the knee flexion angle can change due to the occupant motion. The behavior of the tibial protuberance related to the knee flexion angle has not been described yet. The instantaneous angle of the knee joint at the timing of restraining the knee should be known to manage the geometry and functions of knee restraint devices.
Technical Paper

Achievements and Exploitation of the AUTOSAR Development Partnership

2006-10-16
2006-21-0019
Reductions of hardware costs as well as implementations of new innovative functions are the main drivers of today's automotive electronics. Indeed more and more resources are spent on adapting existing solutions to different environments. At the same time, due to the increasing number of networked components, a level of complexity has been reached which is difficult to handle using traditional development processes. The automotive industry addresses this problem through a paradigm shift from a hardware-, component-driven to a requirement- and function-driven development process, and a stringent standardization of infrastructure elements. One central standardization initiative is the AUTomotive Open System ARchitecture (AUTOSAR). AUTOSAR was founded in 2003 by major OEMs and Tier1 suppliers and now includes a large number of automotive, electronics, semiconductor, hard- and software companies.
Technical Paper

An Approach for Compatibility Improvement Based on US Traffic Accident Data

2003-03-03
2003-01-0906
Traffic accidents in the United States were analyzed using FARS and NASS data. When classified according to vehicle body type and collision type, fatalities were most common in the case of (1) passenger car to passenger car frontal impacts, (2) passenger car to passenger car side impacts, (3) passenger car to LTV side impacts, (4) passenger car to truck frontal impacts, and (5) passenger car to LTV frontal impacts. Among these collisions, it was clearly confirmed that the occupants of a passenger car have a strong tendency to suffer injury when “the passenger car has a frontal impact with a heavier passenger car,” “the passenger car has a frontal impact with an LTV/SUV, truck,” and “the passenger car is side impacted by an LTV/SUV,” or the like. These examples should be recognized as clear cases of incompatibility. This paper will describe an approach which aim at improving compatibility. However, around 60% of occupants who suffer fatal injuries are not wearing a seat belt.
Technical Paper

Analysis and Simplification of Thermal Endurance Tests of NOx Storage-Reduction Catalysts

2004-03-08
2004-01-1496
Our two types of NOx storage-reduction (NSR) catalyst have been tested under various conditions of thermal endurance; the performance of these catalysts have been regressed to give the formulas that enable to estimate the performance after thermal endurance; and we have found the method to simplify (shorten the duration of) the thermal endurance tests and that the thermal deterioration of NSR catalysts is controlled by the worst condition of endurance (at least approximately). The regression formula for the amount of potassium that contributes to the catalyst performance (active K) after the endurance has also been obtained. These formulas predict that the amount of active K is the least for the worst condition of endurance and suggest a difference in deterioration mechanism that reflects the performance between low and high temperatures and the portion of worse deterioration (front or rear).
Technical Paper

Analysis of Occupant Kinematics of Rollover Buck Test

2016-04-05
2016-01-1516
Approximately 20% of traffic fatalities in United States 2012 were caused by rollover accidents. Mostly injured parts were head, chest, backbone and arms. In order to clarify the injury mechanism of rollover accidents, kinematics of six kinds of Anthropomorphic Test Devices (ATD) and Post Mortem Human Subjects (PMHS) in the rolling compartment, whose body size is 50th percentile male (AM50), were researched by Zhang et al.(2014) using rollover buck testing system. It was clarified from the research that flexibility of the backbone and thoracic vertebra affected to occupant’s kinematics. On the other hand, the kinematics research of body size except AM50 will be needed in order to decrease traffic fatalities. There were few reports about the researches of occupant kinematics using FE models of body sizes except AM50.
Technical Paper

Analysis of Personal Routing Preference from Probe Data in Cloud

2020-04-14
2020-01-0740
Routing quality always dominates the top 20% of in vehicle- navigation customer complaints. In vehicle navigation routing engines do not customize results based on customer behavior. For example, some users prefer the quickest route while some prefer direct routes. This is because in vehicle navigation systems are traditionally embedded systems. Toyota announced that new model vehicles in JP, CN, US will be connected with routing function switching from the embedded device to the cloud in which there are plenty of probe data uploaded from the vehicles. Probe data makes it possible to analyze user preferences and customize routing profile for users. This paper describes a method to analyze the user preferences from the probe data uploaded to the cloud. The method includes data collection, the analysis model of route scoring and user profiling. Furthermore, the evaluation of the model will be introduced at the end of the paper.
Technical Paper

Animal-Vehicle Encounter Naturalistic Driving Data Collection and Photogrammetric Analysis

2016-04-05
2016-01-0124
Animal-vehicle collision (AVC) is a significant safety issue on American roads. Each year approximately 1.5 million AVCs occur in the U.S., the majority of them involving deer. The increasing use of cameras and radar on vehicles provides opportunities for prevention or mitigation of AVCs, particularly those involving deer or other large animals. Developers of such AVC avoidance/mitigation systems require information on the behavior of encountered animals, setting characteristics, and driver response in order to design effective countermeasures. As part of a larger study, naturalistic driving data were collected in high AVC incidence areas using 48 participant-owned vehicles equipped with data acquisition systems (DAS). Continuous driving data including forward video, location information, and vehicle kinematics were recorded. The respective 11TB dataset contains 35k trips covering 360K driving miles.
Technical Paper

Automatic Transmission Control Based on Estimation of Sporty Driving Intention

2013-04-08
2013-01-0483
The purpose of this research is to develop an automatic shift control method that emulates an experienced driver's manual shift maneuver which enhances driving performance during sporty driving. Driver control maneuvers and vehicle behavior were observed throughout the process of braking, cornering, and accelerating out of a corner on a winding test track. Close correlations were found between driving maneuvers, longitudinal and lateral acceleration, and the selected engine speed. Based on the analysis, an index is proposed for estimating the intention of the driver to drive in a sporty manner. This index consists of the magnitude of acceleration in a friction circle and the maximum longitudinal acceleration restricted by the performance of the power train. An automatic transmission control based on the estimated driving intention was then developed to achieve the necessary and sufficient available force.
Journal Article

Benefit Estimation of a Lane Departure Warning System using ASSTREET

2012-04-16
2012-01-0289
It is known that the collisions caused by lane departure events account for range of percentages among the countries studied. To help prevent such collisions, the Lane Departure Warning (LDW) system has started to be introduced in production vehicles, but there is little research on its benefits and limitations so far. In this paper we performed an in-depth analysis of the collisions and driver-related essential variables for the lane-departure collision scenarios and demonstrated the benefit estimation process. The benefit of the LDW system is estimated by comparing lane departure events when the vehicle has no LDW, and how they change with the addition of LDW. The event without LDW was modeled in 5 phases: (1) before departure, (2) starting of the departure, (3) departed the lane, (4) at the impact with an object, and, (5) after the impact. “An extensive analysis was conducted of traffic crash data compiled by the Institute for Traffic Accident Research and Data Analysis (ITARDA).
Journal Article

Buckling Analysis of Uncertain Structures Using Imprecise Probability

2015-04-14
2015-01-0485
In order to ensure the safety of a structure, adequate strength for structural elements must be provided. Moreover, catastrophic deformations such as buckling must be prevented. Using the linear finite element method, deterministic buckling analysis is completed in two main steps. First, a static analysis is performed using an arbitrary ordinate applied loading pattern. Using the obtained element axial forces, the geometric stiffness of the structure is assembled. Second, an eigenvalue problem is performed between structure's elastic and geometric stiffness matrices, yielding the structure's critical buckling loads. However, these deterministic approaches do not consider uncertainty the structure's material and geometric properties. In this work, a new method for finite element based buckling analysis of a structure with uncertainty is developed. An imprecise probability formulation is used to quantify the uncertainty present in the mechanical characteristics of the structure.
Technical Paper

Challenges and Opportunities in Adoption of Hybrid Technologies in Medium and Heavy Duty Applications

2011-09-13
2011-01-2251
A key strategy to improving the real-world fuel consumption and emissions of medium and heavy duty vehicles is the hybridization of these applications. Unlike the passenger vehicle market, medium and heavy duty applications are typically comprised of a range of components from a variety of manufacturers. The vocational market diversity and size places considerable demand on fuel efficiency and emission compliance. Medium and heavy duty applications have the ability to be successfully hybridized in ways that are not currently, or would not be practical within a passenger vehicle. This would also drive greater truck and bus vertical integration of the hybrid components. However, medium and heavy duty manufacturers have been prevented from certifying a full vehicle level platform due to the current engine only certification requirements.
Technical Paper

Characteristics of Vehicle Stability Control's Effectiveness Derived from the Analysis of Traffic Accident Data Statistics

2004-10-18
2004-21-0074
Vehicle Stability Control (VSC) is a system designed to help drivers when skidding or unstable vehicle behavior is about to occur. We have studied the characteristics of VSC in reducing accidents by analyzing accident data statistics in Japan. The results indicate that VSC is effective in reducing single car accidents and head-on collisions with other automobiles. In these accidents, the analysis showed that VSC may be more helpful in reducing a larger number of accidents in the higher speed range where vehicle dynamics plays a greater part. It also showed that VSC may contribute to reducing accidents that result from unstable vehicle behavior. VSC demonstrated more effectiveness in reducing accidents involving lateral & rear impacts than those of frontal impacts, and in reducing accidents on wet & snowy/icy roads than those on dry roads.
Technical Paper

Clean and Cost-effective Dry Boundary Lubricants for Aluminum Forming

1998-02-23
980453
Preliminary research in our laboratory has demonstrated that boric acid is an effective lubricant with an unusual capacity to reduce the sliding friction (providing friction coefficients as low as 0.02) and wear of metallic and ceramic materials. More recent studies have revealed that water or methanol solutions of boric acid can be used to prepare strongly bonded layers of boric acid on aluminum surfaces. It appears that boric acid molecules have a strong tendency to bond chemically to the naturally oxidized surfaces of aluminum and its alloys and to make these surfaces very slippery. Recent metal-formability tests indicated that the boric acid films applied to aluminum surfaces worked quite well, improving draw scale performance by 58 to 75%.
Journal Article

Comparison of Near-Field Structure and Growth of a Diesel Spray Using Light-Based Optical Microscopy and X-Ray Radiography

2014-04-01
2014-01-1412
A full understanding and characterization of the near-field of diesel sprays is daunting because the dense spray region inhibits most diagnostics. While x-ray diagnostics permit quantification of fuel mass along a line of sight, most laboratories necessarily use simple lighting to characterize the spray spreading angle, using it as an input for CFD modeling, for example. Questions arise as to what is meant by the “boundary” of the spray since liquid fuel concentration is not easily quantified in optical imaging. In this study we seek to establish a relationship between spray boundary obtained via optical diffused backlighting and the fuel concentration derived from tomographic reconstruction of x-ray radiography. Measurements are repeated in different facilities at the same specified operating conditions on the “Spray A” fuel injector of the Engine Combustion Network, which has a nozzle diameter of 90 μm.
Journal Article

Control Analysis under Different Driving Conditions for Peugeot 3008 Hybrid 4

2014-04-01
2014-01-1818
This paper includes analysis results for the control strategy of the Peugeot 3008 Hybrid4, a diesel-electric hybrid vehicle, under different thermal conditions. The analysis was based on testing results obtained under the different thermal conditions in the Advanced Powertrain Research Facility (APRF) at Argonne National Laboratory (ANL). The objectives were to determine the principal concepts of the control strategy for the vehicle at a supervisory level, and to understand the overall system behavior based on the concepts. Control principles for complex systems are generally designed to maximize the performance, and it is a serious challenge to determine these principles without detailed information about the systems. By analyzing the test results obtained in various driving conditions with the Peugeot 3008 Hybrid4, we tried to figure out the supervisory control strategy.
X