Refine Your Search

Topic

Search Results

Viewing 1 to 11 of 11
Technical Paper

A Systematic Approach Towards Engine Mounting System Vibration Isolation Performance Validation in Commercial Vehicles

2017-07-10
2017-28-1928
Engine mounts and mounting brackets play a critical role in determining NVH performance of a vehicle. A lot of work has been done in the area of virtual simulation using FE models to study engine mounting system performance and its impact on vehicle level performance. An overall approach towards engine mounting system validation at vehicle level is also very critical to validate simulation results in a prototype based on which further refinement work will be carried. In this paper a detailed procedure for engine mount and mounting bracket physical validation at vehicle level is presented. Various tests to be performed at vehicle level to quantify engine mount and mounting bracket performance parameters is discussed in detail along with measurement procedures and techniques. Test results are interpreted and its impact on overall performance is also explained. These test results will help design engineers to further improve engineering parameters of mounts and mounting brackets.
Technical Paper

Assessment of Water Injection in a Heavy Duty Diesel Engine for NOx Reduction Potential

2019-01-09
2019-26-0145
Diesel engine pollutants include Oxides of Nitrogen (NOx) and Particulate Matter (PM) which are traditionally known for their trade-off characteristics. It’s been a challenge to reduce both pollutants at the source simultaneously, except by efforts through low temperature combustion concepts. NOx formation is dependent on the combustion temperature and thus the in-cylinder reduction of NOx formation remains of utmost importance. In this regard, water injection into the intake of a heavy-duty diesel engine to reduce peak combustion temperature and thereby reducing NOx is found to be a promising technology. Current work involves the use of 1-D thermodynamic simulation using AVL BOOST for modeling the engine performance with water injection. Mixing Controlled Combustion (MCC) model was used which can model the emissions. Initially, the model validation without the water injector was carried out with experimental data.
Technical Paper

Bus Body Modularity - Design and Manufacturing

2014-04-01
2014-01-0356
‘To achieve more from less’ has been the oft-quoted phrase in auto industry for quite some time. This philosophy has many analogies like fuel efficiency, modularity, weight reduction, alternative fuels etc. Of these ‘modularity’ is seen as an effective tool, especially for automotive OEMs catering to a wide portfolio of similar products. This paper discusses the implications of modularization on a passenger bus OEM, by taking the ‘bus super structure’ as a test case. The modularized bus structure is compared with the conventional structure for design strength, safety, weight and more importantly manufacturing flexibility. The challenges faced in each of these aspects are discussed. From the study it was understood that the task of manufacturing body modules and interfaces is complex and it calls for a complete revamp of existing fixtures, material handling equipment and even the prescribed tolerances.
Technical Paper

Driver Ergonomics in City Buses and Coaches

2014-09-30
2014-01-2424
Bus and coach drivers spend considerably more time in the vehicle, compared to an average personal car user. However, when it comes to comfort levels, the personal cars, even the inexpensive hatchbacks score much higher than a standard bus. This is because the amount of ergonomic design considerations that go into designing a car's DWS (driver workspace) is much more than that of buses. To understand this lacuna, the existing standards and recommendations pertaining directly or remotely to bus driver workspace were studied. It was understood, beyond certain elementary recommendations, there were very few standards available exclusively for buses. This paper ventures to establish a set of guidelines, exclusively for designing bus and coach driver workspace. The various systems in the driver's work space and their relevance to driver's ergonomics are discussed. References are drawn from different case studies and standards to come up with recommendations and guidelines.
Technical Paper

Effects of Standardisationon Suspension and Steering Kinematics on Diverse Vehicle Architecture

2013-11-27
2013-01-2846
Automotive industry is progressively embracing newer technology for buses, as they are increasingly becoming the backbone of urban transportation. Buses are generally classified based on floor heights, lengths, seating capacity and applications besides lot of other parameters. Generally low floor / low entry buses are used for city transportation, while high floor / high deck buses are used for inter urban and intercity transportation. Yet in a few developing and underdeveloped geographies across the globe, high deck or the semi low floor buses are still used for city/urban transportation. There could be a lot of reasons like infrastructure limitations, the cost of ownership or in some cases even the topology of these geographies could be unfriendly towards low floor buses and low ground clearances. Varying customer requirements, applications and environmental factors necessitates a broad range of offerings from any bus OEM.
Technical Paper

Evolution of Bus Design in India

2013-11-27
2013-01-2764
Buses have been main means of mass transport in organized as well as unorganized sectors in India. Though the art and science of Chassis Designing had been practiced and matured by all Indian OEMs, Body design had long not been accorded high priority by them. Till 1989, there was no comprehensive set of rules enforced. Bus designs were developed with scant regard for safety and emission. OEMs sold their products in the form of drive away chassis and the Body Design & Body Building was largely left to Body Builders, many of whom employed poor design, build and quality control practices. Spurious materials, parts, non-uniform construction resulted in number of accidents and many of them were fatal. Central Motor Vehicle Rules (CMVR) kicked-in 1st July 1989. With roll out of CMVR, various safety related features like entry/exit door, emergency exits, window frames, their locations, dimensions and designs were defined.
Technical Paper

Natural Gas Vehicle Safety Requirements in India, Europe and United States

2013-11-27
2013-01-2815
Natural gas (CNG) vehicles have been introduced in many parts of world including India, Europe and United States and achieved tremendous success in addressing the energy security and pollution challenges. This paper describes in detail the safety requirements for CNG vehicles in India, Europe and United States. Various safety and design requirements for CNG fuel system components such as gas cylinders, cylinder valves, fuel lines, filling connection, pressure regulator, gas-air mixer, electrical systems, are explained. The safety requirements described in ISO standards, UN-ECE standards, USA FMVSS, NFPA standards and Indian Standards are compared and discussed in detail. It also specifies the procedure for commissioning and installation of CNG vehicles. Further, it is concluded that all these international standards for CNG vehicles have adequate provisions with regard to impact protection, passenger safety and fire safety.
Technical Paper

Potential Weight Saving in Buses Through Multi Material Approach

2014-09-30
2014-01-2453
Vehicle light-weighting of late has gained a lot of importance across the automotive industry. With the developed nations like the U.S. setting stringent fuel economy targets of 54.5 mpg by 2025, the car industry's R&D is taking light weighting to a whole new level, besides improving engine efficiency. The commercial vehicles on the other hand are also gradually catching up when it comes to using alternate material for weight reduction. This paper will discuss light-weighting in the context of buses though. For a typical bus, the contribution of shell structure weight in the bus body weight is more than 40%. This qualifies as the area with a huge potential for weight saving. On the other hand the shell structure forms the base skeleton of the bus body providing it with adequate strength and stiffness for meeting both functional (bending & torsional stiffness) and passive safety requirements (rollover compliance).
Technical Paper

Severity Study of Conventional Rollover vs. Flat Ground Rollover

2013-11-27
2013-01-2785
CAE based methodologies for structural analysis has improved considerably and is now commonly used for product development. This methodology can also be used effectively for certification of products against safety standards requiring structural performance. Use of CAE can address the issue of certifying a large number of product variants without the need of expensive and destructive physical tests. The probability and variation in rollover accident varies with different bus application. This paper discuss on the major change in the requirement between flat rollover with the convention rollover over 800mm ditch. It also discusses on the severity of rollover in both rollover scenarios for intercity applications using simulation techniques.
Technical Paper

Simulation to Test Results Correlation Study in a Medium Duty Truck

2023-09-14
2023-28-0037
In view of the stringent emission norms laid out by government of India, BSVI Engines are with additional heat rejection requirements with limited packaging space for Cooling system. An appropriate Radiator, Charge Air Cooler and Fan is decided within the available packaging space based on the Engine heat rejection needs. In this paper an approach is defined to arrive at a Cooling system architecture which is very compact in design and packaged between the Engine and Front member in a limited space. Modelling is done in Thermal simulation software KULI. Good correlation is achieved between simulation to test results.
Technical Paper

Thermal System Design for a Fuel Cell Electric Truck

2023-09-14
2023-28-0020
In today’s world, due to fast depletion of fossil fuel and the increasing CO2 emission, the need to switch to alternate energy sources are higher. Stringent norms on exhaust emissions in IC Engine vehicles implies, very complex after treatment systems. Already many OEMs have refined their development strategies towards phasing out of IC Engines and bringing in Fuel Cell vehicles, Battery Electric Vehicles and Hydrogen IC Engine vehicles. Focus is on Hydrogen for Long Haul vehicles. In this paper cooling system design is demonstrated for Fuel Cell, Battery and Power Electronics system in a Heavy Duty Fuel Cell Electric Truck. Radiator and Fans are selected based on the overall heat rejection and Coolant inlet temperature requirements of components. Cooling system circuit and pump is decided to meet the coolant flow rate targets. High temperature cooling system and Low temperature cooling system are explained in detail. Thermal simulation is done using simulation software KULI.
X