Refine Your Search

Topic

Search Results

Viewing 1 to 12 of 12
Technical Paper

A Modular High Frequency Stable Orthogonal Road Load Exciter for Validation of Automotive Components

2015-09-29
2015-01-2754
The commercial vehicle industry is evolving faster with the rise in multifarious aspects deciding a company's progress. In the current scenario, vehicle performance and its reliability in the areas of payload, fuel economy, etc. play vital roles in determining its sustenance in the industry, in addition to reducing driver fatigue and improving comfort levels. Test quality and time is the key to assure and affirm, smooth and quick launch of the product into the market. This paper details on the design of Multi-Axis road data simulator which entails realistic loads onto the components for capturing meaningful information on behavior of the product and recreate the field failure modes. The design was conceptualized keeping in mind both cost (for initial installation and running cost) and time for testing without loss in the convergence factor.
Technical Paper

Accelerated Testing by (CSCPV) Combined Systematic Calculated Pre-Validation Method

2017-01-10
2017-26-0319
A full-bodied validation of automotive system emphasis on a comprehensive coverage of failure modes of component on one hand and evaluation with full system for the intended function of single component on the other has for long been cumbersome to most commercial vehicle manufacturers. This paper focuses on optimizing the test method in rig testing to relieve the complexity in the structural validation as whole system level. The methodology proposed by authors focuses on accelerating the vibration testing of component by compressing the validation timelines by using CSCPV (Combined Systematic Calculated and Pre Validation) method. This method selects the components of the system for validation by VFTM (Vital Few and Trivial Many) approach from existing testing database failure data and selects the worst predominant failure cases. This CSCPV method uses systematically calculated representing mass from analysis to validate the intended component alone instead of entire system.
Technical Paper

Advance Manufacturing Method to Meet Various Strength Requirements in CABIN Structure

2013-11-27
2013-01-2902
CABIN design is continuously undergoing a huge change for reasons of customer comfort on for meeting regulatory requirement. Consequently the strategic design process will not only consider need for high strength structures but a pragmatic research based approach utilizing the latest technology. Though cab structure is built by a sheet metal blank as per the required dimensions, some locations encounter great amounts of stress and must be designed to withstand the same in a durable way. A possible simpler practice would be to add reinforcements in the high stress area or use high strength material for the entire part. However in this approach weight and cost of the component will be increased. As the weight of the Cabin, vehicle increases this will impact fuel efficiency. Attempts have been taken like using composite materials.
Technical Paper

Bus Passenger Seats - Simulation and Testing for Life Cycle Requirement

2015-01-14
2015-26-0235
Generally it is observed that in city buses most of the time, passenger seat fails at the seat mounting area in buses which are used for more than 3 years. This fatigue failure doesn't get captured either in Anchorage Test or Limited Vibration Test. Passenger seats' durability should be equal to vehicle life which is 10L km or 12 Years of life span. Physical testing on the vibration test rig is time consuming and costly. Most of the time machine availability for testing will be an issue, to validate alternate seat proposals. So there is a need to establish a correlation between physical testing and CAE simulation so that alternate proposals can be easily and quickly verified using CAE alone. This paper deals with the verification and validation of passenger seat in buses for life cycle requirement, through various methodologies adopted from data collection, CAE verification and physical validation to simulate real-time environment.
Technical Paper

Deriving the Validation Protocol for Isolator Switches Used in Commercial Vehicles

2018-04-03
2018-01-0128
All automotive components undergo stringent testing protocol during the design validation phase. Nevertheless, there are certain components in the field which are seldom captured during design validation. One of these components is the battery isolator switch. This project aims at optimizing a validation methodology for this component based on field usage and conditions. The isolator switch is the main control switch which connects and disconnects the electrical loads from the battery. This switch is used in the electrical circuit of the vehicle to prevent unwanted draining of battery when it is not needed and when the vehicle is in switched off. An electrical version of this switch uses electromagnetic coils to short the contacts. The failure mode being investigated is a high current load causing the input and output terminal to be welded.
Technical Paper

Development of Closed Loop Power Recirculating Type Test Rig - Higher Torque Ranges

2021-09-22
2021-26-0491
In the past decades, many impressive progress has been made in the rig development for the gear validation. But, the challenges are to test the entire gear box for the improvement in the single gear alone to ascertain material quality or process improvement, that too with the higher torque range gear boxes, which requires huge investment and power consumption due to high capacity test rig / dynamometer. This paper deals with an experimental validation of the dynamic model for a gear pair test system, representative of a closed loop power recirculating type test rig. Being a closed loop, this system has its own uniqueness, that, it uses the low capacity prime mover, which considers the initial starting loop torque only, to cater the high power requirement in an efficient manner. The key intend of the development of this rig is to reduce the testing from system level to sub component level with low cost operation and more competence for the gears of high torque application.
Technical Paper

Predictive under Hood Thermal Management Model

2024-01-16
2024-26-0272
In the automotive industry, thermal management plays a very important role to solve the problems of energy saving and emission. The under hood thermal management is one of the critical aspects in vehicle thermal management since it caters to critical aspects of engine cooling, charge air cooling, air conditioning and turbocharger cooling. The appropriate thermal management of these critical components is necessary for ensuring the appropriate performance by the vehicle. Hence, under-hood thermal management is the core of the integrated vehicle thermal management. In the thermal management analysis approaches, the numerical simulation is widely adopted as an important approach. Hence, in this paper a model is developed in MATLAB to handle 1D parametric analysis of the cooling system, while reducing the testing time and resources taken for the product development. The developed model can be used to evaluate multiple aggregate options for CAC, Radiator, Engine, Fan etc.
Technical Paper

Remnant Life Estimation of Automotive Components by Resonance Fatigue Method

2017-03-28
2017-01-0387
In today’s commercial vehicle scenario, designing and developing a component which will never fail throughout its lifespan is next to impossible. For a long time especially in the field of automotive, any crack initiation shall deem the component as failed and the design requires further modification. This paper deals with studying the failure of one such component and understanding the effect the crack has on the overall life of the component i.e. understanding the remnant life of the component. The component under study was gear shift lever bracket and is mounted on the engine exhaust manifold. It experiences two types of loads: inertial load due to the engine vibration and gear shift load. Frequent failures were observed in the field and in order to simulate it at lab, an accelerated test approach was adopted. The engine operating speed was used to identify the possible excitation frequency which the component might experience.
Technical Paper

Resolution of Engine Oil Mixing with Power Steering Oil in Steering Pump by Behavioral Study

2015-09-29
2015-01-2720
Steering gear box function is one of the important requirements in heavy vehicles in order to reduce driver fatigue. Improper functioning of steering gear box not only increases the driver fatigue, also concerns the safety of the vehicle. In this present investigation, the engine oil mixing up with steering oil has been identified and steering gear box failure has been observed in the customer vehicle. The root cause of failure has been analyzed. Based on the investigations, in particular design of steering pump has been failed at customer end. The same design of steering pump were segregated and analyzed. Initial pressure mapping study has been conducted. The pressure mapping results revealed that the cavity pressure obstructs the flow of suction pressure. It indicates that obstacle at suction port due to the existence of internal leakage that causes back pressure in the internal cavity of steering pump which sucks engine oil.
Technical Paper

System Level Modeling and Optimization of Fuel Cell Powered Auxiliary Power Unit (APU) to be used in Commercial Vehicles

2015-01-14
2015-26-0116
Engines of commercial vehicles deliver significant amount of power (more than 25% of propulsive power) for non-propulsive loads such as air-conditioner, alternator, air compressor, radiator fan, steering oil pump, lights etc. Use of these auxiliaries cause sub-optimal utilization of engine power resulting in increased fuel consumption and emissions. A fuel cell powered auxiliary power unit (FC-APU) is proposed to isolate the auxiliaries from the engine. Use of FC-APU shall help improve load carrying capacity, gradeability, fuel efficiency and emissions of the vehicle. This paper describes a mathematical system level model developed using MATLAB-SIMULINK to estimate auxiliary power consumption and simulate FC-APU system. A statistical analysis is performed on the power consumed by various auxiliaries during different duty cycles. The data is used to propose a FC- APU system. Fuel cell is the most expensive component in the system.
Technical Paper

Thermal Analysis of Components and Traces on Printed Circuit Boards

2024-01-16
2024-26-0279
High currents flowing through various traces of a printed circuit boards (PCB) causes thermal run away and PCB warpage due to the occurrence of high heat density. The present study discusses on steady state thermal analysis performed in a PCB kept inside an enclosure. Thermal analysis allows PCB designer to quickly move and confirm the component’s placement by examining the temperature plots predicted on the PCB surface. A PCB particularly designed for automated manual transmission (AMT) application employed in Ashok Leyland electric vehicle (EV) trucks is used for this present study. The performed simulations are preliminary level and carried out with commercially available software Altair Simlab ElectroFlo 2022.3. Simlab is a PCB level EDA (Electronic Design Automation) software suite used for design and analysis, and thus helps in minimizing the development cycles.
Technical Paper

Thermal Management of the Li-Ion Battery Pack with Phase Change Material (PCM)

2021-09-22
2021-26-0140
In electric vehicles, Li-ion battery pack is the most expensive subsystem. Therefore, extending the life of the battery pack and thereby reducing the need for battery pack replacement is necessary to offer a viable product at a competitive cost of ownership. Thermal management of battery pack plays an important role in achieving the above mentioned objective since the performance and life of lithium ion batteries is greatly influenced by temperature. There are various thermal management strategies available to keep the temperature under control like air cooling, chilled liquid cooling and hybrid cooling systems. In this paper, a comparison between phase change material (PCM) and PCM/liquid hybrid cooling is made. The result of the study to understand the applicability of PCM for thermal management of Li-ion batteries is presented. CFD thermal analysis under constant electrical load of 1C rate is carried out.
X