Refine Your Search

Topic

Author

Search Results

Technical Paper

A Modular High Frequency Stable Orthogonal Road Load Exciter for Validation of Automotive Components

2015-09-29
2015-01-2754
The commercial vehicle industry is evolving faster with the rise in multifarious aspects deciding a company's progress. In the current scenario, vehicle performance and its reliability in the areas of payload, fuel economy, etc. play vital roles in determining its sustenance in the industry, in addition to reducing driver fatigue and improving comfort levels. Test quality and time is the key to assure and affirm, smooth and quick launch of the product into the market. This paper details on the design of Multi-Axis road data simulator which entails realistic loads onto the components for capturing meaningful information on behavior of the product and recreate the field failure modes. The design was conceptualized keeping in mind both cost (for initial installation and running cost) and time for testing without loss in the convergence factor.
Technical Paper

A Systematic Approach of Improving Reliability Process through Development and Application of On-Board Diagnostics System, for Commercial Vehicle

2015-01-14
2015-26-0101
This paper describes a methodology for design and development of On-Board Diagnostic system (OBD) with an objective to improve current reliability process in order to ensure design & quality of the new system as per requirement of commercial vehicle technology. OBD is a system that detects failures which adversely affect emissions and illuminates a MIL (Malfunction Indicator Lamp) to inform the driver of a fault which may lead to increase in emissions. OBD provides standard and unrestricted access for diagnosis and repair. Below given Figure 1 shows the working principle of OBD system. The exhaust emission of a vehicle will be controlled primarily by Engine Control Unit (ECU) and Exhaust Gas After Treatment Control (EGAS CU). These two control units determine the combined operating strategies of the engine and after treatment device. Figure 1 Modern Control Architecture for OBD System in Commercial vehicle [1]
Technical Paper

Accelerated Testing by (CSCPV) Combined Systematic Calculated Pre-Validation Method

2017-01-10
2017-26-0319
A full-bodied validation of automotive system emphasis on a comprehensive coverage of failure modes of component on one hand and evaluation with full system for the intended function of single component on the other has for long been cumbersome to most commercial vehicle manufacturers. This paper focuses on optimizing the test method in rig testing to relieve the complexity in the structural validation as whole system level. The methodology proposed by authors focuses on accelerating the vibration testing of component by compressing the validation timelines by using CSCPV (Combined Systematic Calculated and Pre Validation) method. This method selects the components of the system for validation by VFTM (Vital Few and Trivial Many) approach from existing testing database failure data and selects the worst predominant failure cases. This CSCPV method uses systematically calculated representing mass from analysis to validate the intended component alone instead of entire system.
Technical Paper

Advance Manufacturing Method to Meet Various Strength Requirements in CABIN Structure

2013-11-27
2013-01-2902
CABIN design is continuously undergoing a huge change for reasons of customer comfort on for meeting regulatory requirement. Consequently the strategic design process will not only consider need for high strength structures but a pragmatic research based approach utilizing the latest technology. Though cab structure is built by a sheet metal blank as per the required dimensions, some locations encounter great amounts of stress and must be designed to withstand the same in a durable way. A possible simpler practice would be to add reinforcements in the high stress area or use high strength material for the entire part. However in this approach weight and cost of the component will be increased. As the weight of the Cabin, vehicle increases this will impact fuel efficiency. Attempts have been taken like using composite materials.
Technical Paper

An Effective Way To Measure Manual Gearbox Synchroniser Performance

2015-09-29
2015-01-2784
Improved economic growth and infrastructure in India has led to new market trends for commercial vehicles. Customers now expect high levels of comfort from all tactile points in a truck cabin; among them the gearlever knob is frequently used and its reactions greatly influence how a driver perceives gearshift quality (GSQ) and thereby vehicle quality. The importance of the gear shift quality of manual transmissions has increased significantly over the past few years as the refinement of other vehicle systems has increased. In Gearbox, synchroniser is the major component whose performance will affect the peak engagement force to a large extent. Synchroniser mechanism allows gear change to be smooth, noiseless and without vibrations. Since the maximum synchronisation effort vary depending on the rate of the shift actuation, it is difficult to compare synchronisers in different transmissions by force alone.
Technical Paper

An Innovative Approach Towards Low-Emission (BS-IV) & Improved-Performance of Diesel Engine with Conventional Fuel Injection Equipment (Non-Electronic Injectors & E-Governed In-Line Pump)

2021-09-22
2021-26-0060
The conventional internal combustion engines continue to dominate many fields like transportation, agriculture and power generation. Moreover, apprehension over oil price restriction has created an unprecedented demand for fuel economy. Diesel engine is mostly preferred for its higher thermal efficiency, high-torque and outstanding longevity. In recent days with flooded technologies, Uniqueness and the Differentiation of Product play vital role for a successful business in Auto Industry. The present invention is related to the Challenges of Design & Development of Conventional Diesel Engine to meet the stringent emission & performance requirements (BS-IV) of Internal Combustion engines, and more particularly to achieve the targets with conventional Fuel Injection Systems (Non-electronic Fuel Injectors, In-Line Fuel Injection Pump-Governed Electronically) with required sub-systems on IC engine.
Technical Paper

Bogie Suspension Noise Reduction on a Commercial Vehicle

2013-09-24
2013-01-2382
The Bogie suspensions ensure better stability at higher loads and also give the utmost reliability under extreme climatic conditions with minimum maintenance. Many vehicle manufactures have adopted for the bogie suspension at rear based on its advantages. The noises generated from the vehicle in the field includes engine noises and flow noises and hence it is very difficult to clearly discern the noise generated from suspension system of the vehicle [1]. Most suspension system noises do not come from a single part but they are caused by the coupling action between related parts, making it difficult to clearly identify the exact cases. This paper details the overall approach to identify the bogie suspension noise on a commercial vehicle and countermeasures to reduce the same.
Technical Paper

Bogie Wear Pad - A Comparative Study

2021-09-22
2021-26-0442
Bogie-type suspensions for trucks are comprised of two axles and a central spring pack on each side of the truck chassis. Bogie suspensions have a good load distribution between the axles and are used for severe applications in trucks, in off-road conditions thereby subjecting them to extreme stain and load. In today’s competitive market scenario, it of utmost importance to minimize down time in commercial vehicles as it directly corresponds to loss in business which leads to customer dissatisfaction. It is therefore essential to optimize and select the right material for each component in the bogie suspension system. This paper deals with the material selection and testing of one such component - Bogie Wear Pad. The bogie wear pad undergoes sliding friction throughout its lifetime during loading and unloading of bogie suspension. Three different materials are selected and their wear is measured under the same conditions of loading.
Technical Paper

Characterizing Steering Feel and Response with Objective Metrics in Commercial Vehicles

2015-09-29
2015-01-2766
Steering wheel being the most used tactile point in a vehicle, its feel and response is an important factor based on which the vehicle quality is judged. Engineering the right feel and response into the system requires knowledge of the objective parameters that relate to the driver perception. Extensive correlation work has been done in the past pertaining to passenger cars, but the driver requirements for commercial vehicles vary significantly. Often it becomes difficult to match the right parameters to the steering feel experienced by the drivers, since most of the standard ISO weave test units used to describe them are of zero or first order parameters. Analyzing the second order parameters gave a better method to reason driver related feel. Also, each subjective attribute was fragmented into sub-attributes to identify the reason for such a rating resulting in the identification of the major subjective parameters affecting driver ratings.
Technical Paper

Coupled FEM-DEM for Determination of Payload Distribution on Tipper Load Body

2024-01-16
2024-26-0255
Tippers used for transporting blue metal, construction and mining material is designed with different types of load body to suit the material being carried, capacity and its application. These load bodies are constructed with high strength material to withstand forces under various operating conditions. Structural strength verification of load body using FEM is conducted, by modelling forces due to payload as a pressure function on the panels of the load body. The spatial variation of pressure is typically assumed. In discrete element method (DEM) granular payload material such as gravel, wet or dry sand, coal etc., can be modelled by accounting its flow and interaction with structure of load body for prediction of force/pressure distribution. In this paper, coupled FE-DEM is used for determining pressure distribution on loading surfaces of a tipper body structure of a heavy commercial vehicle during loading, unloading and transportation.
Technical Paper

Deriving the Validation Protocol for Isolator Switches Used in Commercial Vehicles

2018-04-03
2018-01-0128
All automotive components undergo stringent testing protocol during the design validation phase. Nevertheless, there are certain components in the field which are seldom captured during design validation. One of these components is the battery isolator switch. This project aims at optimizing a validation methodology for this component based on field usage and conditions. The isolator switch is the main control switch which connects and disconnects the electrical loads from the battery. This switch is used in the electrical circuit of the vehicle to prevent unwanted draining of battery when it is not needed and when the vehicle is in switched off. An electrical version of this switch uses electromagnetic coils to short the contacts. The failure mode being investigated is a high current load causing the input and output terminal to be welded.
Technical Paper

Development of Closed Loop Power Recirculating Type Test Rig - Higher Torque Ranges

2021-09-22
2021-26-0491
In the past decades, many impressive progress has been made in the rig development for the gear validation. But, the challenges are to test the entire gear box for the improvement in the single gear alone to ascertain material quality or process improvement, that too with the higher torque range gear boxes, which requires huge investment and power consumption due to high capacity test rig / dynamometer. This paper deals with an experimental validation of the dynamic model for a gear pair test system, representative of a closed loop power recirculating type test rig. Being a closed loop, this system has its own uniqueness, that, it uses the low capacity prime mover, which considers the initial starting loop torque only, to cater the high power requirement in an efficient manner. The key intend of the development of this rig is to reduce the testing from system level to sub component level with low cost operation and more competence for the gears of high torque application.
Technical Paper

Development of an Objective Methodology for Assessment of Commercial Vehicle Gearshift Quality

2014-04-01
2014-01-0182
Rapid growth in the Indian economy has led to new market trends for commercial vehicles. Customers now expect high levels of comfort from all tactile points in a truck cabin; the gear lever knob is frequently used and its reactions greatly influence how a driver perceives Gear Shift Quality (GSQ) and thereby vehicle quality. The subjectivity of human perception is difficult to measure objectively; therefore this paper represents an objective methodology to correlate customer feedback of gearshift reactions. For the attribute evaluation of a set of intermediate commercial vehicles; detailed subjective appraisals were conducted by expert level assessors for GSQ sub-attributes, and a consecutive objective measurement was performed to investigate and substantiate these vehicle assessments.
Technical Paper

Evaluation of Structural Strength of Flatbed Trailer for Service Loading Conditions

2013-09-24
2013-01-2368
Commercial vehicle payload depends on the client for which the vehicle fleet owner is operating. Load carriers like flatbed trailer offer the flexibility to be loaded with a large number of light payloads or a few numbers of massive payloads. Such load carriers have to be evaluated for various possibilities of loading patterns that could happen in the market. The objective of this work is to evaluate flatbed trailer for its structural strength for different customer application cases, using computer simulation. Structural load cases due to payloads like containers, steel coils and cement bags are arrived at. Static structural analysis using MSC Nastran is performed to evaluate for the worst customer loading pattern from structural stress point of view. This paper also describes a simplified method for simulating the effect of trailer suspension, tractor suspension and the fifth-wheel coupling in the analysis whose detailed modeling is not possible at the concept level.
Technical Paper

Failure Analysis and Design Optimisation of Steering Linkage Pivot Shaft of Commercial Vehicle

2015-09-29
2015-01-2726
Commercial vehicles have steering systems with one or more steering links connecting the steering gear box pitman arm and front axle steering arm. In case of twin steer vehicles, intermediate pivot arm is used to transfer the motion proportionately between the two front axles. Intermediate pivot arm is also used in some longer front over-hang vehicles to overcome their packaging constraints and to optimize the mechanical leverage. The pivot shaft is a mechanical part of the intermediate pivot arm assembly upon which pivot arm can swivel in one axis. Steering forces transferred through the drag links generates resultant forces and bending moments on the pivot shaft. In this work, study has been carried out on premature failure of the pivot shaft in city bus application model (Entry + 1 step). Metallurgical analysis of failed part indicated the failure to be due to fatigue. Pivot shaft was tested in rig with similar load conditions in order to replicate the failure.
Technical Paper

Field Failure Simulation of a Non-reactive Suspension Tie Rod for Heavy Commercial Vehicle Using a Road Simulator

2019-01-09
2019-26-0350
The suspension system in a vehicle isolates the frame and body from road shocks and vibrations which would otherwise be transferred to the passengers and goods. Heavier goods vehicles use tandem axles at the rear for load carrying. Both the axles should be inter-connected to eliminate overloading of any one axle when this goes over a bump or a ditch. One of the inter-connecting mechanism used is leaf spring with tie rod, bell crank & linkages, when the first rear axle moves over a bump, the linkages equalize the loading on the second rear axle. This paper details about the failure analysis methodology to simulate the tie rod field failure using a six poster road simulator and to identify the root cause of the failure and further corrective actions.
Technical Paper

Identification and Reduction of Whistling Noise in Passenger Vehicle

2014-09-30
2014-01-2317
The demand for comfort level in commercial vehicles is steadily increasing. Hence, fine-tuned performance parameters and attributes are required to fulfill the expectations from these vehicles. Refinement of noise and vibration without affecting performances of sub-systems and components has become extremely challenging with increasing customer requirements. This paper presents an approach to identify and reduce the high level whistling noise that was perceived in the passenger compartment while the vehicle was accelerated above 50 kmph. Interior noise measurements in static engine run-up condition reveal that the whistling noise is of specific order. Since, whistling noise is related to aerodynamic response of components, engine cooling fan, turbo charger, alternators and compressors were suspected. Using order tracking and near field measurements, HVAC alternator was confirmed as the main cause for whistling noise.
Technical Paper

Methodology for Evaluation of Drivability Attributes in Commercial Vehicle

2015-09-29
2015-01-2767
The emerging trends in commercial vehicle technology have increased the necessity for critical attribute engineering refinements. Drivability is emerging as one of the most significant attributes in the automotive sector. The degree of smoothness in a vehicle's response to the driver's input is termed as drivability. This attribute has to be rigorously refined in order to achieve brand specific vehicle characteristics, which will ensure a thorough product differentiation. In order to calibrate for a positive drivability feel, a methodology for evaluation of drivability is a prerequisite. The scope of this paper is aimed at describing the methodology for subjective and objective evaluation of drivability attributes in commercial vehicles. Drivability is a highly subjectively perceived attribute, therefore a subjective assessment technique to assess drivability attributes and sub-attributes are essential.
Technical Paper

Modal Model Correlation of Commercial Vehicle Frame

2019-01-09
2019-26-0212
Design decisions based on the virtual simulations leads to reduced number of prototype testing. Demonstrated correlation between the computer simulations and experimental test results is vital for designers to confidently take simulation driven design decisions. For the virtual design evaluation of durability, ride, handling and NVH performance, demonstration of correlation of structural dynamic characteristics is critical. Modal correlation between CAE and physical testing validates the stiffness and mass distribution used in the FE model by correlating mode shape and mode frequency in the desired frequency range. The objective of this study is to arrive at a method for establishing modal correlation between CAE and experimental test for a bare frame and thereby enabling evaluation of design iterations in virtual environment to achieve modal targets.
Technical Paper

NVH Investigation and Refinement of Auxiliary Gearbox in a 4×4 Heavy Commercial Vehicle

2013-11-27
2013-01-2850
The present work focusses on the Noise &Vibration refinement carried out on a Heavy commercial vehicle (HCV). In a heavy commercial 4×4 vehicle the existence of an auxiliary gearbox (AGB) is primarily for switching between the multiple drive options. The AGB can become an additional source of noise from the drive train. In this particular vehicle the overall noise from the vehicle has particularly been dominated by the noise from the AGB in specific drive options and conditions as experienced during the subjective assessment of the vehicle initially. First assessment was made by modifying the gear tooth geometry and then the gears were changed from spur to helical as a part of the AGB refinement process. The results of both these assessments were compared. A considerable improvement in the AGB noise was thereby achieved.
X