Refine Your Search

Topic

Search Results

Viewing 1 to 18 of 18
Technical Paper

A Dynamic Tire Concept Model for Early Phases of Ride Comfort Development

2023-01-03
2023-01-5002
In order to correctly predict the impact of tire dimensions and properties on ride comfort in the early phases of the vehicle development process, it is necessary to fully understand their influence on the dynamic tire behavior. The currently existing models for reproducing tire forces often need many measurements for parametrization, simplify physical properties by empiric functions, or have an insufficient simulation speed to analyze many variants in the short periods of early process phases. In the following analysis, a tire concept model is presented, which utilizes relations between the static and dynamic behavior of tires in order to efficiently predict the dynamic forces in the vertical and longitudinal direction during obstacle crossing. The model allows for efficient parametrization by minimizing the number of parameters as well as measurements and ensures a high simulation speed. To realize this, initially, a selection of tires is measured on a tire test rig.
Journal Article

Adapted Development Process for Security in Networked Automotive Systems

2014-04-01
2014-01-0334
Future automotive systems will be connected with other vehicles and information systems for improved road safety, mobility and comfort. This new connectivity establishes data and command channels between the internal automotive system and arbitrary external entities. One significant issue of this paradigm shift is that formerly closed automotive systems now become open systems that can be maliciously influenced through their communication interfaces. This introduces a new class of security challenges for automotive design. It also indirectly impacts the safety mechanisms that rely on a closed-world assumption for the vehicle. We present a new security analysis approach that helps to identify and prioritize security issues in automotive architectures. The methodology incorporates a new threat classification for data flows in connected vehicle systems.
Technical Paper

Correlation-Based Transfer Path Analysis for Brake System-Induced Interfering Noise in the Vehicle Interior

2021-05-11
2021-01-5044
1. The present work introduces an approach for the analysis of the noise propagation behavior of mechatronic brake systems in modern passenger vehicles. While on the one hand, the number of features realized through the mechatronic brake system is strongly increasing; on the other hand, a continuous reduction of the overall vehicle interior noise level can be observed. This leads to an increase of interfering noise phenomena in the vehicle interior that customers might perceive as insufficient product quality. Therefore, noise elimination always plays an important role in vehicle development. The mechatronic brake system induces interfering noise that is transferred into the vehicle interior, differing from vehicle to vehicle and maneuver to maneuver. Supposedly, a wide frequency range, numerous components, and various branched transfer paths in the physical domains of airborne, structure-borne, and fluid-borne sound are involved in the noise propagation.
Technical Paper

Efficient Virtualization for Functional Integration on Modern Microcontrollers in Safety-Relevant Domains

2014-04-01
2014-01-0206
The infrastructure in modern cars is a heterogeneous and historically grown network of different field buses coupling different electronic control units (ECUs) from different sources. In the past years, the amount of ECUs in the network has rapidly grown due to the mushrooming of new functions which historically were mostly implemented on a one-ECU-per-function basis resulting in up to a hundred ECUs in fully equipped luxury cars. Additionally, new functions like parking assist systems or advanced chassis control functions are getting increasingly complex and require more computing power. These two facts add up to a complex challenge in development. The current trend to host several functions in single ECUs as integration platforms is one attempt to address this challenge. This trend is supported by the increased computing power of current and upcoming multi-core microcontrollers.
Technical Paper

Future Automotive Embedded Systems Enabled by Efficient Model-Based Software Development

2021-04-06
2021-01-0129
This paper explains why software for efficient model-based development is needed to improve the efficiency of automakers and suppliers when implementing solutions with next generation automotive embedded systems. The resulting synergies are an important contribution for the automotive industry to develop safer, smarter, and more eco-friendly cars. To achieve this, it requires implementations of algorithms for machine learning, deep learning and model predictive control within embedded environments. The algorithms’ performance requirements often exceed the capabilities of traditional embedded systems with a homogeneous multicore architecture and, therefore, additional computing resources are introduced. The resulting embedded systems with heterogeneous computing architectures enable a next level of safe and secure real-time performance for innovative use cases in automotive applications such as domain controllers, e-mobility, and advanced driver assistance systems (ADAS).
Technical Paper

Future of Automotive Embedded Hardware Trust Anchors (AEHTA)

2022-03-29
2022-01-0122
The current automotive electronic and electrical (EE) architecture has reached a scalability limit and in order to adapt to the new and upcoming requirements, novel automotive EE architectures are currently being investigated to support: a) an Ethernet backbone, b) consolidation of hardware capabilities leading to a centralized architecture from an existing distributed architecture, c) optimization of wiring to reduce cost, and d) adaptation of service-oriented software architectures. These requirements lead to the development of Zonal EE architectures as a possible solution that require appropriate adaptation of used security mechanisms and the corresponding utilized hardware trust anchors. 1 The current architecture approaches (ECU internal and in-vehicle networking) are being pushed to their limits, simultaneously, the current embedded security solutions also seem to reveal their limitations due to an increase in connectivity.
Technical Paper

Integrated Chassis Control for Energy-Efficient Operation of a 2WD Battery-Electric Vehicle with In-Wheel Propulsion

2024-04-09
2024-01-2550
Battery-electric vehicles (BEVs) require new chassis components, which are realized as mechatronic systems mainly and support more and more by-wire functionality. Besides better controllability, it eases the implementation of integrated control strategies to combine different domains of vehicle dynamics. Especially powertrain layouts based on electric in-wheel machines (IWMs) require such an integrated approach to unfold their full potential. The present study describes an integrated, longitudinal vehicle dynamics control strategy for a battery electric sport utility vehicle (SUV) with an electric rear axle based on in-wheel propulsion. Especially the influence of electronic brake force distribution (EBD) and torque blending control on the overall performance are discussed and demonstrated through experiments and driving cycles on public road and benchmarked to results of previous studies derived from [1].
Technical Paper

Model-Predictive Energy Management for the Integration of Plug-In-Hybrid Electric Vehicles into Building Energy Systems

2013-04-08
2013-01-1443
In current research projects such as "Vehicle to Grid" (V2G), "Vehicle to Building" (V2B) or "Vehicle to Home" (V2H), plug-in vehicles are integrated into stationary energy systems. V2B or V2H therefore stands for intelligent networking between vehicles and buildings. However, in these projects the objective is mostly from a pure electric point of view, to smooth the load profile on a household level by optimized charging and discharging of electric vehicles. In the present paper a small energy system of this kind, consisting of a building and a vehicle, is investigated from a holistic point of view. Thermal as well as electrical system components are taken into account and there is a focus on reduction of overall energy consumption and CO₂ emissions. A predictive energy management is presented that coordinates the integration of a plug-in hybrid electric vehicle into the energy systems of a building. System operation is optimized in terms of energy consumption and CO₂ emissions.
Technical Paper

Multicore vs Safety

2010-04-12
2010-01-0207
It is the beginning of a new age: multicore technology from the PC desktop market is now also hitting the automotive domain after several years of maturation. New microcontrollers with two or more main processing cores have been announced to provide the next step change in available computing power while keeping costs and power consumption at a reasonable level. These new multicore devices should not be confused with the specialized safety microcontrollers using two redundant cores to detect possible hardware failures which are already available. Nor should they be confused with the heterogeneous multicore solutions employing an additional support core to offload a single main processing core from real-time tasks (e.g. handling peripherals).
Technical Paper

On Timing Requirements and a Critical Gap between Function Development and ECU Integration

2015-04-14
2015-01-0180
With the increasing complexity of electronic vehicle systems, one particular “gap” between function development and ECU integration becomes more and more apparent, and critical; albeit not new. The core of the problem is: as more functions are integrated and share the same E/E resources, they increasingly mutually influence and disturb each other in terms of memory, peripherals, and also timing and performance. This has two consequences: The amount of timing-related errors increases (because of the disturbance) and it becomes more difficult to find root causes of timing errors (because of the mutual influences). This calls for more systematic methods to deal with timing requirements in general and their transformation from function timing requirements to software architecture timing requirements in particular.
Technical Paper

Optimization of Chassis Vibrations at Single Irregularities

2005-05-16
2005-01-2466
At single irregularities, such as manhole covers and joints in concrete road surfaces, axle and engine vibrations are increased. Depending on the response characteristic of the vehicle chassis and seats and the duration of the event, such excitations can have a considerable influence on the comfort of vehicle occupants. With the objective of optimising the vibration characteristics of the axles of a vehicle, a procedure is presented which clarifies the motion sequences due to certain types of excitation on a roller test stand. This knowledge permits the optimisation of the axle kinematics, the axle bearings, and the spring-damper system.
Technical Paper

Predicting Overall Seating Discomfort Based on Body Area Ratings

2007-04-16
2007-01-0346
For car manufacturers, seating comfort is becoming more and more important in distinguishing themselves from their competitors. There is a simultaneous demand for shorter development times and more comfortable seats. Comfort in automobile seats is a multi-dimensional and complex problem. Many current sophisticated measuring tools were consulted, but it is unclear on which factors one should concentrate attention when measuring comfort. The goal of this paper is to find a model in order to predict the overall seating discomfort based on body area ratings. Besides micro climate, the pressure distribution appears to be the most objective measure comprising with the clearest association with the subjective ratings. Therefore an analysis with three different test series was designed, allowing the variation of pressure on the seat surface. In parallel the subjects were asked to judge the local and the overall sensation.
Technical Paper

Ridemeter – Calculated Ride Comfort

2007-05-15
2007-01-2388
The ridemeter is a development tool that provides a predictive value for subjectively perceived ride quality on the basis of objective measured values. After years of preliminary investigations it was possible to make the link between the subjective driving experience and objective measured data. Intensive validation of the tool known as the ridemeter enables it to obtain meaningful results, which meet with a high degree of acceptance from the development engineer. The ridemeter is capable of providing calculated assessments for different vehicle concepts on different roads. The ridemeter is used on general road tests, on test runs on the AUDI proving ground, on our test rigs and in simulation. Areas of application include benchmark investigations, optimisation steps for suspension components and systems, and the setting out of limit values and tolerance curves in specifications for future vehicles.
Technical Paper

Simulating and Optimizing the Dynamic Chassis Forces of the Audi E-Tron

2020-09-30
2020-01-1521
With battery electric vehicles (BEV), due to the absence of the combustion process, the rolling noise comes even more into play. The BEV technology also leads to different concepts of how to mount the electric engine in the car. Commonly, also applied with the Audi e-tron, the rear engine is mounted on a subframe, which again is connected to the body structure. This concept leads to a better insulation in the high frequency range, yet it bears some problems in designing the mounts for ride comfort (up to 20Hz) or body boom (up to 70Hz). Commonly engine mounts are laid-out based on driving dynamics and driving comfort (up to 20Hz). The current paper presents a new method to find an optimal mount design (concerning the stiffness) in order to reduce the dynamic chassis forces which are transferred to the body (>20Hz). This directly comes along with a reduction of the sound pressure level for the ‘body boom’ phenomena.
Technical Paper

Software Architecture Methods and Mechanisms for Timing Error and Failure Detection According to ISO 26262: Deadline vs. Execution Time Monitoring

2013-04-08
2013-01-0174
More electronic vehicle functions lead to an exponentially growing degree of software integration in automotive ECUs. We are seeing an increasing number of ECUs with mixed criticality software. ISO26262 describes different safety requirements, including freedom from interference and absence from error propagation for the software. These requirements mandate particular attention for mixed-criticality ECUs. In this paper we investigate the ability to guarantee that these safety requirements will be fulfilled by using established (deadline monitoring) and new error detection mechanisms (execution time monitoring). We also show how these methods can be used to build up safe and efficient schedules for today's and future automotive embedded real time systems with mixed criticality software.
Technical Paper

Software Development Process and Software-Components for X-by-Wire Systems

2003-03-03
2003-01-1288
The term X-by-Wire is commonly used in the automotive industry to describe the notion of replacing current mechanical or hydraulic chassis and powertrain systems with pure electro-mechanical systems. The paper describes the current trends and the architecture of future chassis electronics systems. The first part of the paper covers the systems architecture of x-by-wire electronics systems. We describe the network and the software architecture in more detail. The paper also explains some of the software components, in particular the operating system and the communication layer. The second part of the paper gives a description of the current state of the development process for software intended for safety-relevant systems. A possible tool chain for this development process, current possibilities as well as limitations and challenges are described.
Technical Paper

Time-Triggered Architecture Based on FlexRay: Roadmap from High-Speed Data Networking to Safety-Relevant Automotive Applications

2006-10-16
2006-21-0042
Future applications in the automotive domain such as distributed control functions need a highly dependable communication system. The current FlexRay standard already provides high transmission speeds and addresses deterministic data communication. This paper shows how to enhance the safety properties for handling a new set of applications and speeding up the communication even more. The concept of Layered FlexRay is based on the FlexRay protocol and addresses the requirements of safety-relevant applications in a distributed communication network. An implementation of this approach is depicted with a Safety Core hardware chip. It is designed to handle the communication between the FlexRay system beneath and the application on the host CPU above, providing highly efficient data management and execution of safety functions which otherwise would have to be executed in software on the host CPU.
Technical Paper

“Living and Mobility” - Minimization of the Overall Energy Consumption by Using Synergetic Effects and Predictive Information

2012-04-16
2012-01-0496
Issues relating to the reduction of CO₂ emissions and energy consumption are currently more important than ever before. In the construction engineering and automotive sectors research and development efforts are focused closely on efficient buildings and automobiles. The designated target is a reduction in greenhouse gas emissions and overall energy demand. However, almost all approaches focus solely on either "buildings" or "mobility." By considering both aspects as a single holistic system, further energy saving potential arises due to synergetic effects. The goal of current research projects relating to Smart Homes and Vehicle to Building (V2B) is to smooth the electrical load profile on a household level rather than to reduce the individual-related total energy consumption and thereby the CO₂ emissions.
X