Refine Your Search

Topic

Author

Search Results

Viewing 1 to 20 of 20
Technical Paper

A Novel Method for Active Vibration Control of Steering Wheel

2019-01-09
2019-26-0180
Active control mainly comprises of three parts; sensor-detects the input disturbance, actuator -provide counter measures and control logic -processing of input disturbances and converting it into logical output. Lot of methods for active vibration control are available but this paper deals with active control of steering wheel vibrations of an LCV. A steering wheel is, one such component that directly transfers vibration to the driver. Active technique described here is implemented using accelerometer sensor, IMA (Inertial Mass Actuator) and feed forward Fx-LMS (Filtered reference Least Mean Square) control algorithm. IMA is a single-degree-of-freedom oscillator. To enable a control, IMA needs to be coupled to the structure at a single point, acting as an add-on to the passive system. Fx-LMS is a type of adaptive algorithm which is computationally simple and it also includes compensation for secondary path effects by using an estimate of the secondary path.
Technical Paper

A Study to Address the Failure Mechanism of the Conventional 3-Point Restraint in Protecting the Far Side Occupant in a Rollover Accident

2015-01-14
2015-26-0161
Occupant motion in a vehicle rollover accident is a function of many factors. Some important ones are vehicle kinematics, position of the occupant in the vehicle, occupant size, ground topology and restraint usage. The far side belted occupants are more vulnerable than the near side occupants in a rollover accident as they have more energy as a result of their trailing and higher side of the vehicle. This outcome is attributable to the inadequate safety performance of the conventional single loop; B-pillar mounted D-ring restraints. Roof crush tends to displace the vehicle's B-pillar, resulting in D-Ring displacement which causes slack in the lap portion of the restraint. This slack enables centrifugal loads to move the far side occupant further away from the vehicle's instantaneous point of rotation. In this scenario, the presence of any ejection portal can result in an occupant becoming partially or fully ejected.
Technical Paper

Design and Development of Control Strategy for Adaptive Front-Lighting System Suitable for Indian Road and Traffic Conditions

2017-01-10
2017-26-0007
In year 2015, 17 people were killed every hour by road accidents in India [1]. The occurrence of road accidents is observed to be higher during night, when visibility is at its lowest. The two factors which affect visibility are insufficient illumination and glare caused by the oncoming traffic. The Adaptive Front Lighting System [AFS] is an active safety feature which addresses these problems by employing specific lighting modes for Town, Country, Expressway conditions and automatic switching between Driving Beam and Passing Beam whenever required. Matrix of LEDs or a Projector with an actuator or a combination of both is employed in achieving different Lighting modes. The projector based AFS module is preferred for implementing the AFS control logic for passing beam owing to its economic cost.
Technical Paper

Development & Testing of a Camera-Based Driver Monitoring System

2024-01-16
2024-26-0028
One of the primary reasons for road accidents is driving while distracted or drowsy. Often, long and monotonous road journeys lead to distracted or drowsy driving. Therefore, there is a need for a system which alerts a distracted or drowsy driver. Moreover, as the levels of autonomy move beyond SAE Level 2, the system assumes a larger share of the dynamic driving task. Under challenging circumstances, the system might ask the driver to take back vehicle control. To guarantee safety, it’s crucial to monitor the driver’s condition in order to assess their readiness to regain control of the vehicle. An advanced safety feature known as a driver monitoring system (DMS), sometimes referred to as a driver state sensing (DSS) system, is designed to monitor a driver’s attentiveness and alertness, providing warnings or alerts to refocus their attention on driving when drowsiness or distraction is detected.
Technical Paper

Development of Methodology for Accelerated Validation of Axle Components in Relation to Static Load Capacity

2024-01-16
2024-26-0373
The Indian automotive industry is striving towards more safe and durable vehicles. A need was felt to study the effect of changes in axle static loads on fatigue life of the axle components. Also, there was a need to develop generic test method, as there are no test standards or generic methods available in public domain for fatigue testing of commercial vehicle axles. The study was carried out to check direct effect of change in axle loads on various connections on axle, effect of suspension configuration and force distribution, Vehicle dynamics, etc. In this paper, an India specific generic load spectra was evaluated for accelerated laboratory validation. Paper discusses the methodology as; study of heavy commercial vehicle systems, road load data collection on identified test vehicles w.r.t. test matrix finalized, India specific test loads and load spectra development, normalization of axle load spectra w.r.t to static axle weights and arriving at test guidelines.
Technical Paper

Effects of Low Temperature on Forged Steel Materials in Hydrogen Internal Combustion Engines Applications: Assessing Ductile-Brittle Transition

2024-01-16
2024-26-0174
Hydrogen Internal Combustion Engine (H2ICE) has hydrogen gas storage system and is operated at very low temperature before it enters the combustion chamber. The effect of hydrogen on steel materials is detrimental because of hydrogen embrittlement. Forged steel parts are used in engine specifically valve. The goal of the work is to analyze the outcome of low temperature i.e. 35 °C to -30 °C on three types of forged steel materials i.e. 40Cr4, 42CrMo4 and EN8 and assess any potential changes in their properties due to ductile to brittle transition. Charpy impact test is widely used to determine the temperature at which a material shifts from exhibiting ductile behavior to brittle behavior. This transition is critical for understanding the safety and reliability of steel components, as brittle fracture can lead to catastrophic failures.
Journal Article

Generation of 3D-Digital Indian Public Road Profile Database and Its Application for Vehicle Development through Road-Vehicle Interaction Study

2017-01-10
2017-26-0275
Design of vehicle for targeted customer usage is one of the key steps during vehicle development process. Due to globalization, most of vehicles, aggregates, components are being designed for global market considering worldwide load spectrum. Generally for doing this the vehicle response is being measured for different markets but this process is very time consuming. Also for getting these vehicle dependent parameters, exercises need to be repeated on each type/class of vehicle. So there is a need to have a robust procedure, tools which will helps OEM’s to predict the loads, vehicle response for different market segments at an early stage of vehicle development program using the inputs which are vehicle independent. The solution for this could be to use vehicle independent input such as digitized road profiles (2D or 3D) of target customer markets in combination with proper MBD simulation tools.
Technical Paper

Hydrogen Internal Combustion Engine Strategies for Heavy-Duty Transportation: Engine and System Level Perspective

2024-01-16
2024-26-0175
Hydrogen internal combustion engines (H2ICE) offer a cost-effective solution to decarbonize transport by combining a lower carbon intensity fuel with mature and established internal combustion engine technology. While vehicles running with hydrogen have been demonstrated over the years, this fuel's physical and chemical properties require modifications and upgrades on the vehicle from an engine and system-level perspective. In addition, market-specific regulatory and economic factors can also constrain the realization of optimal hydrogen powertrain architectures. Therefore, this paper reviews the impact of hydrogen use on combustion, injection, air management, and after-treatment systems, indicating the different strategies used to enable effective H2ICE strategies from an efficiency, cost, and safety standpoint.
Journal Article

Machine Learning Based Model Development with Annotated Database for Indian Specific Object Detection

2021-09-22
2021-26-0127
Now-a-days, Advanced driver-assistance systems (ADAS) is equipping cars and drivers with advance information and technology to make them become aware of the environment and handle potential situations in better way semi-autonomously. High-quality training and test data is essential in the development and validation of ADAS systems which lay the foundation for autonomous driving technology. ADAS uses the technology like radar, vision and combinations of various sensors including LIDAR to automatize dynamic driving tasks like steering, braking, and acceleration of vehicle for controlled and safe driving. And to integrate these advance technologies, the ADAS needs labeled data to train the algorithm to detect the various objects and moments of driver. Image annotation is one the well-known service to create such training data for computer vision. There are number of open source annotated datasets available viz. COCO, KITTI etc.
Technical Paper

Measurement and Prediction of Sound Absorption of Sound Package Materials in Large and Small Reverberation Chambers

2017-01-10
2017-26-0195
The paper discusses the methodology for measuring the sound absorption of sound package materials in a different sizes of reverberation chambers. The large reverberation chamber is based on test methods and requirements as per ASTM C423 and ISO 354 standards. Both the test standards are similar and recommend a reverberation chamber volume of at least 125 m3 and 200 m3 respectively for sound absorption measurements from 100 Hz to 5000 Hz. The test sample size requirements are from 5.5 to 6.7 m2 as per ASTM C423 and 10 to 12 m2 as per ISO 354. In the automotive sector passenger car, heavy truck, and commercial vehicle, the parts that are used are much smaller in size than the size prescribed in both the standards. The requirement is to study the critical parameters such as the chamber volume, sample size, reverberation time and cut-off frequency etc. which are affecting the sound absorption property of acoustic material.
Technical Paper

Modal Analysis of Chladni Plate Using Cymatics

2020-09-25
2020-28-0320
This work aims at demonstrating nodes and antinodes at various frequencies of vibrations. Chladni plate is used for this purpose. When the plate is excited because of vibrations from a vibrator source, the sand of the plate creates specific patterns. These patterns are related to the excitation frequency. The sand on the plate moves away from antinodes where the amplitude of the standing wave is maximum and towards nodal lines where the amplitude is minimum or zero, forming patterns known as Chladni figures. The formation of patterns depends on material properties, geometry of plate, and thickness of plate and frequency/vibration pattern of the vibrator. The experimental setup consisted of a aluminum rectangular plate of 16 cm × 16 cm and aluminum circular plate of diameter 16 cm are having thickness of 0.61 mm placed over a mechanical vibrator (GelsonLab HSPW-003), which was driven by a sine wave signal generator (Ningbo Hema scientific).
Technical Paper

Prediction of Thermal Comfort Inside a Midibus Passenger Cabin Using CFD and Its Experimental Validation

2015-01-14
2015-26-0210
This paper presents a methodology for predicting thermal comfort inside Midibus cabin with an objective to modify the Heating, Ventilation and Air Conditioning (HVAC) duct design and parametric optimization in order to have improved thermal comfort of occupant. For this purpose the bus cavity is extracted from baseline CAD model including fully seated manikins with various seating positions. Solar Load has been considered in the computational model and passenger heat load is considered as per BSR/ASHRAE 55-1992R standard. CFD simulation predicted the air temperature and velocity distribution inside passenger cabin of the baseline model. The experimental measurements have been carried out as per the guidelines set in APTA-BT-RP-003-07 standard. The results obtained from CFD and Experimental test were analysed as per EVS EN ISO7730 standard and calculated occupant comfort in terms of thermal comfort parameters like Predicted Mean Vote (PMV) and Predicted Percentage Dissatisfied (PPD).
Technical Paper

Prediction of Tyre Dynamic Behaviour for NVH and its Experimental Validation in Anechoic Chamber

2021-09-22
2021-26-0303
In present scenario, tyre industry is more focused on providing maximum extent of NVH comfort to passengers by improvising the tyre design. Noise contribution from the tyres is classified in to three regions, viz., structure-borne (tyre vibrations), air-borne (tread pattern) and cavity noise (air cavity). In general, a Finite Element (FE) model of tyre provides an inherent advantage of analyzing tyre dynamic behavior. In this paper, an attempt was made to develop a three-dimensional FE tyre model and validate the same through experimental approach. The CAD Model of the tyre was generated through 3D image scanning process. Material property extraction of tyre was carried out by Universal Testing Machine (UTM) to generate Finite Element (FE) model. For validation of tyre FE model, Experimental Modal Analysis (EMA) and Noise Transfer Function (NTF) were conducted.
Technical Paper

Process Modelling of Aluminium Propeller Shaft by Integrated Computational Materials Engineering Approach

2021-09-22
2021-26-0374
An excellent physical and mechanical property makes Aluminium (Al) alloy suitable alternative lightweight materials against steel and cast iron in automotive components. ICME is a computational tool, which integrates the materials information to engineering product performance analysis. MatCalc is ICME tool, which follows the chain rule of process, microstructure, property and performance relationship in materials development. This paper reports the development of Al 6061-T6 propeller shaft through forging process and the materials and process model of the Al yoke is simulated using MatCalc simulation software. Finite element analysis method is used for designing of Al 6061-T6 propeller shaft. The forged Al yoke is solutionized at temperature 550°C for 1 hr followed by artificial ageing at temperature 180°C for 16 hrs to improve the hardness and strength of the yoke.
Technical Paper

Quantification of Alertness and Evaluation Method for Vision Based Driver Drowsiness and Alertness Warning System

2024-01-16
2024-26-0021
The paper talks about Quantification of Alertness for vision based Driver Drowsiness and Alertness Warning System (DDAWS). The quantification of alertness, as per Karolinska Sleepiness Scale (KSS), reads the basic input of facial features & behaviour recognition of driver in a standard manner. Although quantification of alertness is inconclusive with respect to the true value, the paper emphasised on systematic validation process of the system covering various scenarios in order to evaluate the system’s functionality very close to the reality. The methodology depends on definition of threshold values of blink and head pose. The facial features are defined by number of blinks with classification of heavy blink and light blink and head pose in (x, y, z) directions. The Human Machine Interface (HMI) warnings are selected in the form of visual and acoustic signals. Frequency, Amplitude and Illumination of HMI alerts are specified.
Technical Paper

Regulatory Framework of Construction Equipment Vehicles in India

2024-01-16
2024-26-0089
The Construction & Mining field is continuously upgrading, reshaping under the stimulus of technical enhancement. India is considered one of fastest growing country in the word. Requirement for Construction Equipment Vehicles in India is continuously growing due increased rate infrastructure development. To promote development of the Construction Equipment Vehicles (CEV’s) manufacturing sector it was also necessary to build a new governance architecture. Every vehicle plying on road has to comply with Central Motor Vehicle Regulatory requirements as per CMVR act 1989. Earlier 2021 CEV’s were required to go through performance trials like brake, steering effort, turning circle measurement, speedometer calibration as dynamic tests as per regulations.
Technical Paper

Ride-Comfort Analysis for Commercial Truck Using MATLAB Simulink

2019-11-21
2019-28-2428
Ride Comfort forms a core design aspect for suspension and is to be considered as primary requirement for vehicle performance in terms of drivability and uptime of passenger. Maintaining a balance between ride comfort and handling poses a major challenge to finalize the suspension specifications. The objective of this project it to perform ride- comfort analysis for a commercial truck using MATLAB Simulink. First, benchmarking was carried out on a 4x2 commercial truck and the physical parameters were obtained. Further, a mathematical model is developed using MATLAB Simulink R2015a and acceleration- time data is collected. An experimentation was carried out on the truck at speeds of 20 kmph, 30 kmph, 40 kmph and 50 kmph over a single hump to obtain actual acceleration time domain data. The model is then correlated with actual test over a single hump. This is followed by running the vehicle on Class A, B & C road profiles to account for random vibrations.
Technical Paper

Simulation Methodology Development for Vibration Test of Bus Body Structure Code AIS-153:2018

2024-01-16
2024-26-0249
A bus is integral part of public transportation in both rural and urban areas. It is also used for scheduled transport, tourism, and school transport. Buses are the common mode of transport all over the world. The growth in economy, the electrification of public transport, demand in shared transport, etc., is leading to a surge in the demand for buses and accelerating the overall growth of the bus industry. With the increased number of buses, the issue of safety of passengers and the crew assumes special importance. The comfort of driver and passenger in the vehicle involves the vibration performance and therefore, the structural integrity of buses is critically important. Bus safety act depicts the safety and comfort of bus operations, management of safety risks, continuous improvement in bus safety management, public confidence in the safety of bus transport, appropriate stakeholder involvement and the existence of a safety culture among bus service providers.
Technical Paper

Synthesis and Characterization of Nickel and Ni-TiO2 Nanocomposite Coatings Processed by Pulse Electro-deposition Technique

2015-01-14
2015-26-0060
Nickel electroplating is commonly used with substrates including steel, aluminum, plastic and zinc die-cast parts because of its high resistance to temperature, corrosion and wear in harsh conditions. To further enhance its tribological and mechanical properties, research works are going on to produce nano-reinforced composites of Ni with various ceramic and rare earth oxides like CeO2, ZrSiO4, SiC, TiO2, etc. The aim of present work is synthesis and characterization of Ni films and Ni based TiO2 nano-composite coating processed by pulse co-electrodeposition technique. Also, to investigate the various properties such as mechanical, wear and corrosion resistance, conductivity & thermal stability of Ni-TiO2 nanocomposites electrodeposited on steel substrate, especially the effects of the amount of nanosized TiO2 particles in Ni-TiO2 nanocomposites.
Technical Paper

Systematic Evaluation of 20% Ethanol Gasoline Blend (E20) as a Potential Alternate Fuel

2017-01-10
2017-26-0072
Utilization of higher ethanol blends, 20% ethanol in gasoline (E20), as an alternate fuel can provide apparent benefits like higher octane number leading to improved anti-knocking properties, higher oxygen content resulting in complete combustion. Apart from technical benefits, use of ethanol blends offer certain widespread socioeconomic benefits including option of renewable source of energy, value addition to agriculture feedstock resulting in increase in farm income, creation of more jobs in rural sector and creating job at local levels. Use of higher blends of ethanol can reduce dependence on foreign crude leading to substantial savings in cost of petroleum import. The impact of higher Gasoline-Ethanol blend (E20), on the fuel system components of gasoline vehicles must be known for assessment of whether the fuel system will be able to perform as intended for the complete design life of the system.
X