Refine Your Search

Topic

Author

Search Results

Technical Paper

A Novel Method for Active Vibration Control of Steering Wheel

2019-01-09
2019-26-0180
Active control mainly comprises of three parts; sensor-detects the input disturbance, actuator -provide counter measures and control logic -processing of input disturbances and converting it into logical output. Lot of methods for active vibration control are available but this paper deals with active control of steering wheel vibrations of an LCV. A steering wheel is, one such component that directly transfers vibration to the driver. Active technique described here is implemented using accelerometer sensor, IMA (Inertial Mass Actuator) and feed forward Fx-LMS (Filtered reference Least Mean Square) control algorithm. IMA is a single-degree-of-freedom oscillator. To enable a control, IMA needs to be coupled to the structure at a single point, acting as an add-on to the passive system. Fx-LMS is a type of adaptive algorithm which is computationally simple and it also includes compensation for secondary path effects by using an estimate of the secondary path.
Technical Paper

A Unique Approach for Motion Planning for Autonomous Vehicle Using Modified Lattice Planner

2021-09-22
2021-26-0121
In order to travel in a chaotic and dynamic environment, an autonomous vehicle requires a motion plan. This motion plan ensures collision free, optimum travel without violating any traffic rules. The optimum solution for path planning problem exists in higher dimensions, however, with the help of useful heuristics the problem can be solved in real time, which is required for real time operation of an autonomous vehicle. There are different well established techniques available to plan a collision free kinematically traversable path. One of such techniques is called conformal Lattice planner. However, the legacy version of conformal lattice planner is not optimized and also is prone to fail under specific dynamic environment conditions. Moreover, the legacy version of conformal lattice planner is also not road aware. Due to this reason it is a semi optimized way to solve the motion planning problem.
Technical Paper

Acoustic Enclosure Optimization for a Higher Capacity Diesel Generator Set Using Statistical Energy Analysis (SEA) Based Approach

2017-01-10
2017-26-0188
Diesel powered electric generators are used in a variety of applications, such as emergency back-up power, temporary primary power at industrial facilities, etc. As regulatory and customer requirements demand quieter designs, special attention is given to the design of acoustic enclosures to balance the need of noise control with other performance criteria like ventilation and physical protection. In the present work, Statistical Energy Analysis (SEA) approach augmented by experimental inputs is used to carry out Vibro-acoustic analysis of an enclosure for higher capacity Diesel generator set. The exterior sound radiated from an enclosed generator is predicted and further enclosure is optimized for an improved sound-suppression. The airborne sources such as engine, alternator, radiator fan and exhaust are modelled explicitly using experimental noise source characterization. Structure borne inputs are also captured in the test for improving modelling accuracy.
Technical Paper

Biodiesel from Microalgae

2017-01-10
2017-26-0077
Microalgae as feedstock are the potential third generation biofuels. Microalgae are photosynthetic microorganism which requires light, carbon-di-oxide, nitrogen, phosphorous, and potassium for growth and to produce lipids, proteins and carbohydrates in large amounts over short a periods of time. The production of biofuels from microalgal is a viable alternative due to their easy adaptability to growth conditions, possibility of growing biomass either in fresh or marine waters. Hence the current project was designed to elucidate the biodiesel producing ability of blue-green algae such as Spirulina platensis and Green algae Chlorella vulgaris. The selected algae were cultivated in suitable growth media such as modified Zarrouke medium and bold basal medium, respectively. The Spirulina platensis and Chlorella vulgaris were mass cultured for 8 days then harvested using 50 micron nylon filters and dried in sunlight to obtain dry biomass.
Technical Paper

Comparative Analysis of Electromagnetic Radiated Emission for Electric Powertrain and Conventional Spark Ignition (SI) Powertrain

2024-01-16
2024-26-0133
Due to the transformation of the automotive industry from conventional vehicles to electric vehicles, new challenges have emerged concerning Electromagnetic Compatibility. Though the Radiated Emission limits in global regulation are the same for both types of powertrains of vehicles, however, due to the phenomena of conversion of high voltage to low voltage, rapid charging/discharging, and different components involved in electric powertrain, the Radiated Emission from electric vehicles give a strikingly different trend which is challenging to combat. When compared with the conventional Spark Ignition vehicle, many other electronic components of the electric vehicle stay in the mode of Power ON while in the “Ignition ON” steady state. This resulted in us observing a significant shift in the amplitude and frequency throughout the frequency band of Radiated Emission measurement.
Technical Paper

Cost Effective Pathways toward Highly Efficient and Ultra-Clean CI Engines, Part I: Combustion System Optimization

2024-01-16
2024-26-0037
Following global trends of increasingly stringent greenhouse gas (GHG) and criteria pollutant regulations, India will likely introduce within the next decade equivalent Bharat Stage (BS) regulations for Diesel engines requiring simultaneous reduction in CO2 emissions and up to 90% reduction in NOx emission from current BS-VI levels. Consequently, automakers are likely to face tremendous challenges in meeting such emission reduction requirements while maintaining performance and vehicle total cost of ownership (TCO), especially in the Indian market, which has experienced significant tightening of emission regulation during the past decade. Therefore, it is conceivable that cost effective approaches for improving existing diesel engines platforms for future regulations would be of high strategic importance for automakers.
Technical Paper

Cost Effective Pathways toward Highly Efficient and Ultra-Clean Compression-Ignition Engines, Part II: Air-Handling and Exhaust Aftertreatment

2024-01-16
2024-26-0044
Currently, on-road transport contributes nearly 12% of India’s total energy related carbon dioxide (CO2) emissions that are expected to be doubled by 2040. Following the global trends of increasingly stringent greenhouse gas emissions (GHG) and criteria emissions, India will likely impose equivalent Bharat Stage (BS) regulations mandating simultaneous reduction in CO2 emissions and nearly 90% lower nitrogen oxides (NOx) from the current BS-VI levels. Consequently, Indian automakers would likely face tremendous challenges in meeting such emission reduction requirements while balancing performance and the total cost of ownership (TCO) trade-offs. Therefore, it is conceivable that cost-effective system improvements for the existing internal combustion engine (ICE) powertrains would be of high strategic importance for the automakers.
Technical Paper

Derivation of Non-linear Stiffness Characteristics for Lumped Uniaxial Springs from Hyperelastic Material Constitutive Models

2014-04-28
2014-28-0038
Hyperelastic material simulations are commonly performed in commercial FE codes due to availability of sophisticated algorithms facilitating virtual characterization of such materials in FEA easily. However, the solution time required is longer in FEA. Especially when excitation frequencies do not interfere with structural modes, flexible multibody simulation offers a lucrative and computationally inexpensive alternative. However, it is difficult to directly characterize hyperelastic materials in commercial MBS simulation codes, so the reduced solution time comes at the cost of decreased simulation accuracy, especially if the designer is provided with crude stress - strain test data. Hence, the need is to overcome the drawbacks in FEA and multibody codes, as well as to leverage best of both these codes simultaneously.
Technical Paper

Design / Analysis and Development of Cylinder Head for High Performance 3 Cylinder CRDi Euro-V Diesel Engine for a High Combustion Pressure of 200 Bar

2010-10-05
2010-01-1975
This work is a part of program on “Development of High Performance DI, 3 Cylinder CRDI Diesel Engine to meet Euro-IV/V Emission Norms focused on automotive passenger car application purpose. This is a 3 Cylinder, TCIC engine designed for combustion pressure of 160 bar max for first stage which is being upgraded to 200 bar max in the second stage. Cylinder Head design is a part of complicated configuration whose construction and principal dimensions are dependent on the size of inlet and exhaust valves, fuel injectors positioning and mounting, port layout and swirl and shape of combustion chambers. The cylinder head of a direct-injection diesel engine has to perform many functions. It has to bring charge air to the cylinder and exhaust gas from the cylinder, with minimum pumping loss and required swirl and other properties of charge motion.
Technical Paper

Design and Development of 3- Cylinder: 75 kW/liter, High Power Density Diesel Engine for Passenger Car Application to Meet Euro IV/V Emission Norms

2011-01-19
2011-26-0033
To meet the latest trends in internal combustion engines pertaining efficiency, emissions and durability, downsizing of the engine has become the key focus area. This paper describes about a robust, reliable and an integrated approach used in design and development of state of art high power density/ high speed engine developed from the concept, which can be adopted for passenger car and LCV application. A three-cylinder, 1.5 liter displacement diesel engine, fully balanced is being designed with an objective to produce 115kW @ 4200 rpm, delivering a specific power output over 75 kW/liter, which is at par with a contemporary class of specification in it. In the first stage, a derated version of 75 kW (50 kW/liter) with Euro-IV and Euro-V specifications is targeted aiming at smaller car and light motor vehicle segment and a prime-mover for hybrid application.
Technical Paper

Design and Development of High Performance Diesel Engine Block for High Power Density Engines with an Integrated Approach

2010-10-05
2010-01-1973
This work is a part of program on “Development of High Power Density DI, Diesel Engine to Meet US EPA - Tier III Emission norms for off highway and Genset application purpose. This is a 4 Cylinder, TCIC engine delivering 165 Hp @ 2500 rpm. BMEP at max torque comes to be 18 bar giving max cylinder firing pressure of 160 bar. Engine block is a most vital component which has to serve various functions all together. Also design of block for such a high BMEP levels, demands to give a different design strategy required for development of High Performance Engines. In order to reduce overall production cost, several constraints are imposed on design of new block. Design of block is carried out within several design, assembly and manufacturing constraints such as maintain a specific cylinder centre distance, integral oil cooler in the engine block, re-location of camshaft and FIE positions, incorporation of various accessories viz. steering pump, Air Compressor etc.
Technical Paper

Design and Development of Radiator Fan for Automotive Application

2012-04-16
2012-01-0555
A methodology for design and development of radiator cooling fan is developed with an objective to improve underhood thermal management. For this purpose an Axial Fan Design Software has been developed which is based on Arbitrary Vortex Flow theory. The software is useful for obtaining initial blade design for the given basic functional requirements in terms of Airflow, Pressure Rise and Speed which defines the operating point of the fan. CFD analysis of the initial fan design is then carried out to predict the fan performance curve. Computation model resembles a fan set up in a wind tunnel. Further, Parametric Optimization is carried out using CFD to meet the functional requirements. A Rapid Prototype sample of the optimized fan design is manufactured and tested in a fan test rig made as per AMCA 210-99 standard to evaluate the fan performance curve and the power consumption.
Technical Paper

Design and Development of Tunable Exhaust Muffler for Race Car

2016-02-01
2016-28-0193
The Exhaust Noise is one of the major noise pollutants. It is well-known that for higher noise reduction, the engine has to bear high back pressure. For a race car, back-pressure plays a major role in engine's performance characteristics. For a given condition of engine rpm & load, conventional muffler has a fixed value of back-pressure and noise attenuation. Better acceleration requires low back-pressure, but the exhaust noise should also be less than the required (Norm) value (110 dBA). This contradicting condition is achieved here by using a ‘Butterfly Valve’ in this novel exhaust muffler. The butterfly valve assumes 2 positions i.e. fully open & fully closed. When the valve is fully closed, the noise reduction will be higher, but the back-pressure will also shoot up. When open, noise reduction will be less and so the back-pressure. So, when better performance is required, the valve is opened and back-pressure is reduced. The muffler is designed for a 4 cylinder 600 cc engine.
Technical Paper

Design and Development of a Retrofit Solution for Converting a Conventional LCV into Parallel Hybrid Electric Vehicle

2019-01-09
2019-26-0117
In today’s scenario, the emission norms are getting stringent day by day due to an increased level of pollution. The world is shifting towards low carbon footprint which made it necessary to adopt efficient technologies with fewer emissions. The hybridization of vehicles has resulted in improved efficiency with lower emissions which can fulfil the near future emission norms. Retrofitting of hybrid components into a conventional IC engine vehicle is so far the best way to achieve better performance both economically and technologically. This research is primarily focused on the design and development of a novel retrofit solution of P3x architecture for the light commercial vehicle. This retrofit solution is different from other hybrid solutions in terms of powertrain. It contains an innovative add-on powertrain along with the existing powertrain. This additional powertrain consists of a pair of helical gears followed by a chain and sprocket as a coupler for traction motor.
Technical Paper

Development of In-house Competency to Build Compact Gerotor Oil Pump for High Speed Diesel Engine Application

2013-11-27
2013-01-2738
Gerotor pump is a positive displacement pump unit which is widely used for lubrication in on-road and off-road engine applications. This paper is focused on Gerotor pump design competency established at ARAI comprising of design of inner and outer rotors, suction & delivery ports, optimizing inlet and outlet diameters & its position, development of methodology to calculate oil flow rate, volumetric efficiency, mechanical efficiency & slippage. The finalization of design is followed by CFD of Gerotor pump to optimize the pressure and flow pulsation. A trochoidal profile is used to design the inner and outer rotors and its conjugate profile are realized by a set of equations using a method based on the theory of gearing. Suction and delivery port is analytically designed based on the same design parameters of the trochoidal profile.
Technical Paper

Development of Indigenous Automated System to Evaluate Clutch Performance Under Real World Conditions

2017-01-10
2017-26-0320
Automotive clutches form the most important component in the drive line which acts both as torque transmitter and as a fuse. Testing clutches, in the vehicle assembly, poses certain limitations. In this context the automotive clutch, as a component, needs to be evaluated to determine various performance parameters like wear, load loss, slipping torque, slipping time etc. to meet desired design, performance and durability requirements. It is very important to simulate engine and vehicle conditions in terms of operating environment, speed and load accurately while evaluating above parameters. This creates lot of challenges to design and develop a test rig capable of evaluating complete clutch performance. Very limited options are available for such test rigs worldwide. In India, no manufacturer provides such indigenous test rigs. Developing an indigenous, cost effective clutch test rig was the need of the hour.
Journal Article

Development of Multi Cylinder Turbocharged Natural Gas Engine for Heavy Duty Application

2017-01-10
2017-26-0065
CNG has recently seen increased penetration within the automotive industry. Due to recent sanctions on diesel fuelled vehicles, manufactures have again shifted their attention to natural gas as a suitable alternative. Turbocharging of SI engines has seen widespread application due to its benefit in terms of engine downsizing and increasing engine performance [1]. This paper discusses the methodology involved in development of a multi cylinder turbocharged natural gas engine from an existing diesel engine. Various parameters such as valve timing, intake volume, runner length, etc. were studied using 1D simulation tool GT power and based on their results an optimized configuration was selected and a proto engine was built. Electronic throttle body was used to give better transient performance and emission control. Turbocharger selection and its location plays a critical role.
Technical Paper

Development of Road to Lab Steering Test Rig (ROLAST)

2017-01-10
2017-26-0315
The Steering system is one of the most safety critical systems in an automobile. With time the durability, reliability and the fine-tuning of the parameters involved in this subsystem have increased along with the competitiveness of the market. In a competitive market, accelerated testing is the key to shorter development cycles. It is observed that the majority of component manufacturers have a preference on vehicle level testing to achieve their development goals. The vehicle level trials are time consuming and lack the control and repeat-ability of a laboratory environment. This paper describes the development of a steering test rig designed to simulate the disturbances experienced on road within a controlled laboratory environment. The five axis steering rig would allow simulation of individual road wheel displacement along with steering wheel angle input and lateral steering rack displacements. The rig also is designed to be adaptable to a range of vehicle categories.
Technical Paper

Development of System Level Testing Method for Passenger Car Engine Mounts

2024-01-16
2024-26-0324
Engine mount is an integral part of any Internal Combustion engine. It is the medium which isolates the vibrations coming from engine being transferred to the chassis or body. Engine or power plant is the main source of unbalanced vibrations. The major role of an engine mount is to reduce those vibration levels, improve ride comfort and increase the life of an engine and its parts [1]. This work determines the Test methodology development for passenger car engine mounts in the Laboratory by using Multi-axial environment [2]. This explains the details of truly Multi-axial test rig development, Drive file creation and the Durability Testing with the maintained vehicle conditions by simulating field conditions in the laboratory. The Multi-axial test rig developed with incorporation of vehicle’s both Front Drive shafts torques and One Propeller shaft which simulates the Front wheel drives and the rear prop shaft torque.
Technical Paper

Development of Systematic Technique for Design of Electric Motor Mounting System in EV/ HEV Application

2021-09-22
2021-26-0165
Last decade has been era of environmental awareness. Various programs have launched for making devices and appliances eco-friendly. This initiative has lead automobile industry toward hybridization and now total electrification of vehicles. As electric motor is being added to automobile as a prime mover, due to high frequency vibrations along with higher torque electric motor needs to be isolated properly & carefully as this vibration can damage other automobile parts. Dynamic response of electric motor is different from response of IC engines, so use of engine mounting design method may not be suitable for designing mounting system for electric motor. First, both 4- point and 3- point mounting system are considered for analytical and experimental investigation of force and displacement transmissibility. Position and orientation of elastomeric mounts plays important role in design of mounting system for electric motor.
X