Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

3rd Generation AHSS Virtual and Physical Stamping Evaluation

2020-04-14
2020-01-0757
Developing lightweight, stiff and crash-resistant vehicle body structures requires a balance between part geometry and material properties. High strength materials suitable for crash resistance impose geometry limitations on depth of draw, radii and wall angles that reduce geometric efficiency. The introduction of 3rd generation Advanced High Strength Steels (AHSS) can potentially change the relationship between strength and geometry and enable simultaneous improvements in both. This paper will demonstrate applicability of 3rd generation AHSS with higher strength and ductility to replace the 780 MPa Dual Phase steel in a sill reinforcement on the current Jeep Cherokee. The focus will be on formability, beginning with virtual simulation and continuing through a demonstration run on the current production stamping tools and press.
Technical Paper

A Benchmark Test for Springback: Experimental Procedures and Results of a Slit-Ring Test

2005-04-11
2005-01-0083
Experimental procedures and results of a benchmark test for springback are reported and a complete suite of obtained data is provided for the validation of forming and springback simulation software. The test is usually referred as the Slit-Ring test where a cylindrical cup is first formed by deep drawing and then a ring is cut from the mid-section of the cup. The opening of the ring upon slitting releases the residual stresses in the formed cup and provides a valuable set of easy-to-measure, easy-to-characterize springback data. The test represents a realistic deep draw stamping operation with stretching and bending deformation, and is highly repeatable in a laboratory environment. In this study, six different automotive materials are evaluated.
Technical Paper

A Comparative Examination of the Resistance Spot Welding Behavior of Two Advanced High Strength Steels

2006-04-03
2006-01-1214
Advanced high-strength steels (AHSS) are a class of steels that have a minimum tensile strength of 500 MPa. The advantages of AHSS include superior formability and better crash energy absorption compared with conventional low-strength steels having a minimum tensile strength of 270 MPa. Several steels with a minimum tensile strength of 590 MPa have already found use in current vehicles, and others with minimum tensile strength up to 980 MPa have been qualified for use in future vehicle models. Two 780 MPa steels of interest are 780 DP (Dual Phase) and 780 TRIP (TRansformation Induced Plasticity). In this study, an examination was undertaken to compare the resistance spot-welding behavior of commercially produced 1.6 mm-thick, hot-dipped galvannealed, 780 MPa DP and TRIP steel sheet. Included in the study were evaluations of the weld lobes, weld microhardness, and the shear- and cross-tension strengths of resistance spot welds for the two steels.
Technical Paper

A Failure Criterion for Stretch Bendability of Advanced High Strength Steels

2006-04-03
2006-01-0349
Studies in an Angular Stretch Bend Test (ASBT) have demonstrated that the failure location moves from the side wall to punch nose area. This occurs as the R/T ratio decreases below a certain limit and applies to most low carbon steels with the exception of Dual Phase (DP) steels. Such behavior in DP steels indicates that bending effects have a severe impact on the formability of DP materials. Therefore, the traditional criterion using the forming limit curve (FLC) is not suitable to assess the formability at punch radius areas for DP steels due in part to its uniqueness of unconventional microstructures. In this paper, a new failure criterion, ‘Bending-modified’ FLC (BFLC), is proposed by extending the traditional FLC using the “Stretch Bendability Index” (SBI) concept for the stretch bendability assessment.
Technical Paper

A Model for On-Line Monitoring of In-Cylinder Residual Gas Fraction (RGF) and Mass Flowrate in Gasoline Engines

2006-04-03
2006-01-0656
In a gasoline engine, the unswept in-cylinder residual gas and introduction of external EGR is one of the important means of controlling engine raw NOx emissions and improving part load fuel economy via reduction of pumping losses. Since the trapped in-cylinder Residual Gas Fraction (RGF, comprised of both internal, and external) significantly affects the combustion process, on-line diagnosis and monitoring of in-cylinder RGF is very important to the understanding of the in-cylinder dilution condition. This is critical during the combustion system development testing and calibration processes. However, on-line measurement of in-cylinder RGF is difficult and requires an expensive exhaust gas analyzer, making it impractical for every application. Other existing methods, based on measured intake and exhaust pressures (steady state or dynamic traces) to calculate gas mass flowrate across the cylinder ports, provide a fast and economical solution to this problem.
Technical Paper

A Semi-Empirical Model for Fast Residual Gas Fraction Estimation in Gasoline Engines

2006-10-16
2006-01-3236
Accurate accounting for fresh charge (fuel and air) along with trapped RGF is essential for the subsequent thermodynamic analysis of combustion in gasoline engines as well as for on-line and real-time quantification as relevant to engine calibration and control. Cost and complexity of such techniques renders direct measurement of RGF impractical for running engines. In this paper, an empirically-based approach is proposed for on-line RGF, based on an existing semi-empirical model [1]. The model developed expands the range over which the semi-empirical model is valid and further improves its accuracy. The model was rigorously validated against a well correlated GT-POWER model as well as results from 1D gas exchange model [2]. Overall, using this model, RGF estimation error was within ∼1.5% for a wide range of engine operating conditions. The model will be implemented in Dyno development and calibration at Chrysler Group.
Technical Paper

A Simple Approach to Selecting Automotive Body-in-White Primary-Structural Materials

2002-07-09
2002-01-2050
A simple strategy for building lightweight automobile body-in-whites (BIWs) is developed and discussed herein. Because cost is a critical factor, expensive advanced materials, such as carbon fiber composites and magnesium, must only be used where they will be most effective. Constitutive laws for mass savings under various loading conditions indicate that these materials afford greater opportunity for mass saving when used in bending, buckling or torsion than in tensile, shear or compression. Consequently, it is recommended that these advanced materials be used in BIW components subject to bending and torsion such as rails, sills, “A-B-C” pillars, etc. Furthermore, BIW components primarily subject to tension, compression, or shear, such as floor pans, roofs, shock towers, etc., should be made from lower cost steel. Recommendations for future research that are consistent with this strategy are included.
Technical Paper

A Study on Vehicle Elastomer Mount Preloading and Impact Response with Test Validation

2005-04-11
2005-01-1415
A variety of elastomer mounts are being used for vehicles as isolators/dampers between body and frame, on the engine cradle, etc. These vehicle flexible mounts, made of mainly rubber materials and housed in a metallic tube, are indispensable components affecting the quality of the vehicle ride, noise and vibration. In the auto industry, the usual practice when designing vehicle flexible mounts is to minimally reflect impact considerations in the mount design features. However, in most high-speed vehicle crash events where the mounts fail, the crash responses, including occupant injury severity, are known to be very different from the responses of non-failure cases. Even in low-speed vehicle impact cases, excessive deformation of the flexible mounts could cause significant variance in the compliance of the vehicle acceleration level to the air-bag firing and timing threshold requirements.
Technical Paper

Advanced High Strength Steel Springback and Sidewall Curl Control Guideline

2005-04-11
2005-01-0499
Low carbon steels are being replaced by advanced high strength steels (AHSS) due to high demand of the future lighter weight vehicle, while still maintaining good or even better crash performance. However, sidewall curl and springback (section opening) have been found to increase as the strength of the sheet metal increases. Experiments have been conducted on the bending under tension (BUT) test to seek an effective control methodology regarding the applications of the advanced high strength steels (AHSS) in this study. Steels that were studied included a low carbon steel (DQSK), two dual phase steels (DP) and a transformation induced plasticity (TRIP) steel. Two different gauges of each AHSS were also included for a gauge sensitivity study. Different processing variables (four different diameter pins combining with five different back tension forces) were applied to the tests, and the springback angle and sidewall curl were measured for bend and bend-unbend areas of the specimen.
Journal Article

Advanced High-Strength Steel (AHSS) Performance Level Definitions and Targets

2018-04-03
2018-01-0629
A novel performance classification system has been developed for advanced high-strength steel (AHSS). This system considers intrinsic global and local formability parameters derived from standard uniaxial tension tests and is applicable to all current and future AHSS materials. The overall AHSS performance index (P.I.) is defined herein as the product of the ultimate tensile strength (UTS) and the formability index (F.I.), where F.I. is an intermediate strain value between the true uniform strain and the true fracture strain (TFS). Target P.I. values are defined for First Generation AHSS (GEN1), Improved First Generation AHSS (GEN1+), Third Generation AHSS (GEN3), and AHSS Future. Performance is further distinguished by local, balanced, and global formability characteristics and by relative yield strength (yield-to-tensile ratio). Additionally, the influence of tension test specimen geometry and fracture area measurement method on the TFS value was explored.
Technical Paper

An Experimental Study on Static and Fatigue Strengths of Resistance Spot Welds with Stack-up of Advanced High Strength Steels and Adhesive

2016-04-05
2016-01-0389
This paper describes static and fatigue behavior of resistance spot welds with the stack-up of conventional mild and advanced high strength steels, with and without adhesive, based on a set of lap shear and coach peel coupon tests. The coupons were fabricated following specified spot welding and adhesive schedules. The effects of similar and dissimilar steel grade sheet combinations in the joint configuration have been taken into account. Tensile strength of the steels used for the coupons, both as-received and after baked, and cross-section microstructure photographs are included. The spot weld SN relations between this study and the study by Auto/Steel Partnership are compared and discussed.
Technical Paper

An Exploration of Failure Modes in Rolled, Ductile, Cast-Iron Crankshafts Using a Resonant Bending Testing Rig

2005-04-11
2005-01-1906
This report explores the relationship of different failure criteria - specifically, surface cracks, stiffness changes, and two-piece failures - on rolled, ductile, cast-iron crankshafts. Crankshaft samples were closely monitored throughout resonant bending fatigue testing and were taken to near complete fracture. By monitoring resonance shifts of the samples during testing, stiffness changes and cracks were monitored. These data showed that an accelerating frequency shift was sufficient to indicate imminent two-piece failure and that this condition can be used as a failure criterion. Fatigue studies on two different crankshafts using this failure criterion were compared to those using a surface crack failure criterion. This comparison showed that using the surface crack failure criterion erroneously decreased the apparent fatigue life of the crankshaft significantly.
Technical Paper

Application of a Structural Reinforcing Material to Improve Vehicle NVH Characteristics

1999-09-28
1999-01-3223
Cavity reinforcement materials are used in the automotive industry to stiffen hollow cavities in vehicle body constructions. Typical areas of use include the engine rails, rocker panels, roof support or any other cavity in need of structural reinforcement. Use of these materials can allow for significant reductions in vehicle weight and increase structural stiffness with minimal impact to production tooling. Additional benefits can be gained by using the material as a physical barrier to the propagation of noise, water and dust. The objective of this paper is to describe a case study which implemented a new type of cavity reinforcing material to improve low frequency vehicle noise and vibration characteristics.
Technical Paper

Automotive Applications of Stretch Flange High Strength Steel

2003-03-03
2003-01-0690
A typical forming operation of chassis components (control arms, cross members, etc.) often involves edge stretching and/or hole expansion. As a result, the edge split is a common forming failure mode. To overcome this problem, Japanese and European automakers use stretch flange high strength (SFHS) steel due to its high strength and excellent edge stretch capability. Recently, SFHS steel has gained greater attention in North America and is currently being used for upper and lower control arm applications. This paper includes a discussion on general edge stretch issues in forming operations, including material data that demonstrate the higher stretch limit of SFHS steel as compared to other high strength steels. In a case study, SFHS steel is applied to a control arm and finite element analysis (FEA) is conducted to evaluate forming and structural performance.
Technical Paper

Axial Crash Testing of Advanced High Strength Steel Tubes

2005-04-11
2005-01-0836
Axial drop tower crash tests were carried out on a variety of 70-mm outer-diameter continuous-welded cylindrical steel tubes with several thicknesses (t). Ultimate tensile strength (UTS) ranged from less than 300 MPa for a fully stabilized steel to greater than 800 MPa for the advanced high strength steels (AHSS). In the tests, a 520-kg weight is dropped from a height of 3.3 meters to achieve impact velocities of 6.1 to 6.7 m/s (14 to 15 mph). Load and acceleration data are recorded as a function of time as the tube is crushed axially. The results show that, for a given impact condition, the peak and average crush loads of a steel tube is directly proportional to UTS × t2, while axial crush distance is inversely proportional to UTS × t2. As such, crash deformation can be reduced by substituting higher strength steels of the same thickness, or existing crash deformation can be maintained and weight reduction achieved by substituting higher strength steels with reduced thickness.
Technical Paper

CAE Fatigue Prediction of Fuel Tank Straps using Proving Ground Loads

2005-04-11
2005-01-1405
The durability of fuel tank straps is essential for vehicle safety. Extensive physical tests are conducted to verify designs for durability. Due to the complexity of the loads and the fuel-to-tank interaction, computer-aided-engineering (CAE) simulation has had limited application in this area. This paper presents a CAE method for fuel tank strap durability prediction. It discusses the analytical loads, modeling of fuel-to-tank interaction, dynamic analysis methods, and fatigue analysis methods. Analysis results are compared to physical test results. This method can be used in either a fuel-tank-system model or a full vehicle model. It can give directional design guidance for fuel tank strap durability in the early stages of product development to reduce vehicle development costs.
Technical Paper

Calibration and Validation of GISSMO Damage Model for A 780-MPa Third Generation Advanced High Strength Steel

2020-04-14
2020-01-0198
To evaluate vehicle crash performance in the early design stages, a reliable fracture model is needed in crash simulations to predict material fracture initiation and propagation. In this paper, a generalized incremental stress state dependent damage model (GISSMO) in LS-DYNA® was calibrated and validated for a 780-MPa third generation advanced high strength steels (AHSS), namely 780 XG3TM steel that combines high strength and ductility. The fracture locus of the 780 XG3TM steel was experimentally characterized under various stress states including uniaxial tension, shear, plane strain and equi-biaxial stretch conditions. A process to calibrate the parameters in the GISSMO model was developed and successfully applied to the 780 XG3TM steel using the fracture test data for these stress states.
Technical Paper

Clamp Load Consideration in Fatigue Life Prediction of a Cast Aluminum Wheel Using Finite Element Analysis

2004-03-08
2004-01-1581
Loads generated during assembly may cause significant stress levels in components. Under test conditions, these stresses alter the mean stress which in turn, alters the fatigue life and critical stress area of the components as well. This paper describes the Finite Element Analysis (FEA) procedure to evaluate behavior of a cast aluminum wheel subjected to the rotary fatigue test condition as specified in the SAE test procedure (SAE J328 JUN94). Fatigue life of the wheel is determined using the S-N approach for a constant reversed loading condition. In addition, fatigue life predictions with and without clamp loads are compared. It is concluded that the inclusion of clamp load is necessary for better prediction of the critical stress areas and fatigue life of the wheel.
Technical Paper

Contact Mechanics Simulation for Hot Spots Investigation

2001-03-05
2001-01-0035
Rapid wear out of a disk brake due to phenomena commonly known as hot spots is one of various problems faced by brake manufacturers. Hot spots are localized high temperature areas generated on the frictional surface of a disk brake during braking. The non-uniform surface expansion caused by hot spots on the disk surface may cause pedal pulsation or known as thermal judder. This effect in the long run will shorten a brake's life. Numerical simulation of a disk brake requires the use of nonlinear contact mechanics approach. The simulation is computationally very expensive and difficult to perform. A computer simulation technique has been developed at the DaimlerChrysler Brake Core Group to investigate the hot spot phenomena since 1997. The technique was implemented on 3-D finite element models to simulate frictional contacts between the disk and its pads. Computer code ABAQUS is used for these analyses and computations are performed in Silicon Graphics, Origin 2000 machines.
Technical Paper

Crash Performances of Advanced High Strength Steels of DP780, TRIP780 and DP980

2005-04-11
2005-01-0354
Advanced high strength steels (AHSS), such as dual phase (DP) and transformation induced plasticity (TRIP) steels, have been increasingly used in automotive industry. One of the major advantages of AHSS is the excellent crash energy absorption capability. In this study, crash performances were evaluated for four AHSS including DP980, DP780, TRIP780 (780T), and TRIP590 (590T). Axial crush and bending crush tests were performed to evaluate the material crush performance. High strain rate tension test results for those materials were also presented. FEA analyses with parameter sensitivity studies were conducted including strain rate sensitivity effect, part geometry effects, welding models and forming effects. Good correlations between simulation and experimental data were achieved.
X