Refine Your Search

Topic

Search Results

Journal Article

A Complete Assessment of the Emissions Performance of Ethanol Blends and Iso-Butanol Blends from a Fleet of Nine PFI and GDI Vehicles

2015-04-14
2015-01-0957
Biofuels, such as ethanol and butanol, have been the subject of significant political and scientific attention, owing to concerns about climate change, global energy security, and the decline of world oil resources that is aggravated by the continuous increase in the demand for fossil fuels. This study evaluated the potential emissions impacts of different alcohol blends on a fleet of modern gasoline vehicles. Testing was conducted on a fleet of nine vehicles with different combinations of ten fuel blends over the Federal Test Procedure and Unified Cycle. The vehicles ranged in model year from 2007-2014 and included four vehicles with port fuel injection (PFI) fueling and five vehicles with direct injection (DI) fueling. The ten fuel blends included ethanol blends at concentrations of 10%, 15%, 20%, 51%, and 83% by volume and iso-butanol blends at concentrations of 16%, 24%, 32%, and 55% by volume, and an alcohol mixture giving 10% ethanol and 8% iso-butanol in the final blend.
Technical Paper

A Holistic Hydraulic and Spray Model – Liquid and Vapor Phase Penetration of Fuel Sprays in DI Diesel Engines

1999-10-25
1999-01-3549
For studying the effects of injection system properties and combustion chamber conditions on the penetration lengths of both the liquid and the vapor phase of fuel injectors in Diesel engines, a holistic injection model was developed, combining hydraulic and spray modeling into one integrated simulation tool. The hydraulic system is modeled by using ISIS (Interactive Simulation of Interdisciplinary Systems), a one dimensional in–house code simulating the fuel flow through hydraulic systems. The computed outflow conditions at the nozzle exit, e.g. the dynamic flow rate and the corresponding fuel pressure, are used to link the hydraulic model to a quasi–dimensional spray model. The quasi–dimensional spray model uses semi–empirical 1D correlation functions to calculate spray angle, droplet history and droplet motion as well as penetration lengths of the liquid and the vapor phases. For incorporating droplet vaporization, a single droplet approach has been used.
Technical Paper

A Reduced Reaction Mechanism for Predicting Knock in Dual-Fuel Engines

2000-03-06
2000-01-0957
The present study extends our previous methane flame chemistry to methane autoignition based on most recent shock-tube experiments. It results in a detailed mechanism that consists of 128 elementary reactions among 31 species and that can be applied to predicting methane autoinginition times for temperatures between 1000 K and 2000 K, pressures between 1 bar and 250 bar and equivalence ratios between 0.4 and 3. A 9-step short mechanism is derived from this detailed mechanism with the objective of predicting knock in dual-fuel engines for equivalence ratio between 0.5 and 1.5 with temperature ranging 800 to 1200 K and pressure from 50 to 150 bar.
Journal Article

An Experimental Investigation of Low-Soot and Soot-Free Combustion Strategies in a Heavy-Duty, Single-Cylinder, Direct-Injection, Optical Diesel Engine

2011-08-30
2011-01-1812
High-efficiency, clean-combustion strategies for heavy-duty diesel engines are critical for meeting stringent emissions regulations and reducing the costs of aftertreatment systems that are currently required to meet these regulations. Results from previous constant-volume combustion-vessel experiments using a single jet of fuel under quiescent conditions have shown that mixing-controlled soot-free combustion (i.e., combustion where soot is not produced) is possible with #2 diesel fuel. These experiments employed small injector-orifice diameters (≺ 150 μm) and high fuel-injection pressures (≻ 200 MPa) at top-dead-center (TDC) temperatures and densities that could be achievable in modern heavy-duty diesel engines.
Technical Paper

Development of a Carbon/Epoxy Body for a High Performance Vehicle

2003-03-03
2003-01-1195
Considerations follow [1] on the development of the carbon/epoxy body of the Lamborghini Murcièlago. Laminate lay-up and material selection for stiffness criteria are reviewed. Engineering solutions for tooling operations in order to achieve class A surface certification are analyzed. Design for environmental aging is also discussed and accelerated degradation testing methods are described. Finally, the program that lead to the adoption of hybrid adhesive bonding as sole method of joining the composite body components to the tubular steel frame is reviewed.
Technical Paper

Dynamic Stage of Combustion in a Direct Injection Methanol Fueled Engine

2002-03-04
2002-01-0998
The paper is based on the premise that the sole purpose of combustion in piston engines is to generate pressure for pushing the expansion process away from the compression process (both expressed in terms of appropriate polytropes) to create a work producing cycle. This essential process, referred to as the dynamic stage of combustion, is carved out of the cycle and its salient properties deduced from the measured pressure profile, as a solution of an inverse problem: deduction of information on an action from its outcome. An analytical technique, construed for this purpose, is first presented and, then, applied to a direct injection, spark-ignition, methanol fueled four-stroke engine.
Technical Paper

Dynamics of Combustion in a Diesel Engine Under the Influence of Air/Fuel Ratio

2000-03-06
2000-01-0203
The dynamic stage of combustion - the intrinsic process for pushing the compression polytrope away from the expansion polytrope to generate the indicator work output of a piston engine - was studied to reveal the influence of the air/fuel ratio on the effectiveness with which the fuel was utilized. The results of tests carried out for this purpose, using a 12 liter diesel engine, were reported last year [SAE 1999-01-0517]. Presented here is an analytic interpretation of the data obtained for part-load operation at 1200 and 1800 rpm. A solution is thus provided for an inverse problem: deduction of information on the dynamic features of the exothermic process of combustion from measured pressure record. Provided thereby, in particular, is information on the effectiveness with which fuel was utilized in the course of this process - a parameter reflecting the effect of energy lost by heat transfer to the walls.
Technical Paper

Easily Verifiable Adaptive Sliding Mode Controller Design with Application to Automotive Engines

2016-04-05
2016-01-0629
Verification and validation (V&V) are essential stages in the design cycle of industrial controllers to remove the gap between the designed and implemented controller. In this study, a model-based adaptive methodology is proposed to enable easily verifiable controller design based on the formulation of a sliding mode controller (SMC). The proposed adaptive SMC improves the controller robustness against major implementation imprecisions including sampling and quantization. The application of the proposed technique is demonstrated on the engine cold start emission control problem in a mid-size passenger car. The cold start controller is first designed in a single-input single-output (SISO) structure with three separate sliding surfaces, and then is redesigned based on a multiinput multi-output (MIMO) SMC design technique using nonlinear balanced realization.
Journal Article

Electrical Architecture Optimization and Selection - Cost Minimization via Wire Routing and Wire Sizing

2014-04-01
2014-01-0320
In this paper, we propose algorithms for cost minimization of physical wires that are used to connect electronic devices in the vehicle. The wiring cost is one of the most important drivers of electrical architecture selection. Our algorithms perform wire routing from a source device to a destination device through harnesses, by selecting the optimized wire size. In addition, we provide optimized splice allocation with limited constraints. Based on the algorithms, we develop a tool which is integrated into an off-the-shelf optimization and workflow system-level design tool. The algorithms and the tool provide an efficient, flexible, scalable, and maintainable approach for cost analysis and architecture selection.
Technical Paper

Electronic Fuel Injection for Two-Stroke Cycle Gasoline Engines

1986-09-01
861242
A new method for direct cylinder injection for two-stroke cycle engines is described. The technique utilizes simple hole type nozzles, accumulator injectors, medium pressure (100 bar), pressure metering, and full electronic controls. The objectives of the system are to accomplish, in a single injection, the four essentials of effective fuel injection (a) metered quantity of fuel, (b) desired spatial distribution, (c) timing of injection, (d) complete vaporization prior to the start of combustion. Special techniques such as “cloud-stratified charge” and “skip-fire” are discussed as well as the special design features of the components and control systems. Data presented include details of spray formation and engine performance with dramatic reduction in fuel consumption and exhaust emissions.
Technical Paper

Evaluating Particulate Emissions from a Flexible Fuel Vehicle with Direct Injection when Operated on Ethanol and Iso-butanol Blends

2014-10-13
2014-01-2768
The relationship between ethanol and iso-butanol fuel concentrations and vehicle particulate matter emissions was investigated. This study utilized a gasoline direct injection (GDI) flexible fuel vehicle (FFV) with wall-guided fueling system tested with four fuels, including E10, E51, E83, and an iso-butanol blend at a proportion of 55% by volume. Emission measurements were conducted over the Federal Test Procedure (FTP) driving cycle on a chassis dynamometer with an emphasis on the physical and chemical characterization of particulate matter (PM) emissions. The results indicated that the addition of higher ethanol blends and the iso-butanol blend resulted in large reductions in PM mass, soot, and total and solid particle number emissions. PM emissions for the baseline E10 fuel were characterized by a higher fraction of elemental carbon (EC), whereas the PM emissions for the higher ethanol blends were more organic carbon (OC) in nature.
Journal Article

Evaluation and Modification of Constant Volume Sampler Based Procedure for Plug-in Hybrid Electric Vehicle Testing

2011-08-30
2011-01-1750
Plug-in hybrid electric vehicles (PHVs) consume both fossil fuel and grid electricity, which imposes emission testing challenges on the current constant volume sampler (CVS) test method. One reason is that in the charge-depleting cycle, PHVs having all-electric range operate the engine for a small portion of the traction energy need, causing the CVS to overdilute the exhaust gas. The other reason is that the dilution factor (DF) in the EPA calculation has an error caused by ignoring the CO₂ concentration in ambient air. This paper evaluates these challenges by testing a Toyota PHV on the industry standard CVS system combined with additional continuous sampling methodology for continuous diluents, smooth approach orifice (SAO) measurement for ambient air flow, and fuel flow meter (FFM) measurement for fuel consumption. The current EPA DF can produce an error resulting in higher mass calculation.
Journal Article

Experimental Investigation of Channel Aspect Ratio on Interdigitated PEMFC Performance

2014-04-01
2014-01-1828
Novel water management and reactant distribution strategies are critical to next generation polymer electrolyte membrane fuel cell systems (PEMFCs). Improving these strategies in PEMFCs leads to higher power density and reduced stack size for vehicle applications, which reduces weight and improves the price competitiveness of these systems. Interdigitated flow fields induce convective transport (cross flow) through the porous GDL between adjacent channels and are superior at water removal beneath land areas, which can lead to higher cell performance. However, the head loss due to flow, among other factors, may cause cross flow maldistribution of reactants down the channel. Such maldistribution may lead to areas of low or areas of excess cross flow. This, in turn, can cause areas of low oxygen concentration and water build up, and therefore higher pressure losses and uneven membrane hydration, all of which reduce overall cell performance.
Technical Paper

Influence of Charge Dilution on the Dynamic Stage of Combustion in a Diesel Engine

2001-03-05
2001-01-0551
A study of the influence of dilution, attained by air excess, upon the dynamic stage of combustion - the nucleus of a work producing cycle - in a diesel engine, is reported as a sequel of SAE 2000-01-0203. While the latter has been restricted to variation in dilution obtained by bleeding air compressed by the supercharger, here the scope of engine tests was expanded by incorporating an additional stage of compression. Besides revealing the mechanism of the dynamic stage, the paper demonstrates that its effectiveness is a linear function of the air excess coefficient, irrespectively how it is attained.
Technical Paper

Meeting Both ZEV and PNGV Goals with a Hybrid Electric Vehicle - An Exploration

1996-08-01
961718
This paper is written to provide information on the fuel efficiency, emissions and energy cost of vehicles ranging from a pure electric (ZEV) to gasoline hybrid vehicles with electric range varying from 30 mi (50km) to 100 mi (160km). The Federal government s PNGV and CARB s ZEV have different goals, this paper explores some possibilities for hybrid-electric vehicle designs to meet both goals with existing technologies and batteries. The SAE/CARB testing procedures for determining energy and emission performance for EV and HEV and CARB s HEV ruling for ZEV credit are also critically evaluated. This paper intends to clarify some confusion over the comparison, discussion and design of electric- hybrid- and conventional- vehicles as well.
Technical Paper

Model for Control of Combustion in a Piston Engine

2006-04-03
2006-01-0401
Significant improvement of engine performance can be achieved by ushering in a micro-electronic system to control the execution of combustion - an exothermic process whose sole purpose is to generate pressure. Hence, the primary feedback for the controller is provided by a pressure transducer. The activators are piezo-electrically activated pintle valves of MEMS type. The task of the micro-electronic processor is to provide an accurate feed-forward signal for the actuators on the basis of the information obtained from the feedback signal, within a time interval between consecutive cycles. Furnished here for this purpose is an algorithm for an interface module between the pressure sensor and the governor. Concomitantly, the gains thus attainable in the reduction of fuel consumption and curtailment of pollutant formation are thereby assessed. The implementation of this method of approach is illustrated by application to a HCCI engine.
Journal Article

Performance and Activity Characteristics of Zero Emission Battery-Electric Cargo Handling Equipment at a Port Terminal

2022-03-29
2022-01-0576
Goods movement and port related activities are a significant source of emissions in many large urban areas. Electrification of diesel cargo handling equipment is one method of reducing community exposure to these emissions, that also provides the potential for reducing greenhouse gas emissions. This study evaluated the performance of several pieces of zero emission cargo transfer equipment for a demonstration conducted at two terminal locations at the Port of Long Beach (POLB). This included the data logging of three battery-electric top handlers and one battery-electric yard tractor, as well as two baseline diesel top handlers and one diesel yard tractor. The battery-electric equipment typically operated about 5 hours per day, while using between 34 to 50% of the battery pack state of charge (SOC). In general, the battery-electric equipment was able to provide comparable hours of operation to the diesel equipment over a typical 8-hour shift.
Technical Paper

Potential for Closed Loop Air-Fuel Ratio Management of a Diesel Engine

1999-03-01
1999-01-0517
The potential for improving the efficiency of a heavy duty turbocharged diesel engine by closed loop Air-Fuel Ratio (AFR) management has been evaluated. Testing conducted on a 12 liter diesel engine, and subsequent data evaluation, has established the feasibility of controlling the performance through electronic control of air management hardware. Furthermore, the feasibility of using direct in-cylinder pressure measurement for control feedback has been established. A compact and robust fiber optics sensor for measuring real time in-cylinder pressure has been demonstrated on a test engine. A preferred method for reducing the cylinder pressure data for control feedback has been established for continued development.
Technical Paper

Pressure Diagnostics of Closed System in a Direct Injection Spark Ignition Engine

2003-03-03
2003-01-0723
The sole purpose of combustion in a piston engine is to generate pressure in order to push the piston and produce work. Pressure diagnostics provides means to deduce data on the execution of the exothermic process of combustion in an engine cylinder from a measured pressure profile. Its task is that of an inverse problem: evaluation of the mechanism of a system from its measured output. The dynamic properties of the closed system in a piston engine are expressed in terms of a dynamic stage - the transition between the processes of compression and expansion. All the phenomena taking place in its course were analyzed in the predecessor of this paper, SAE 2002-01-0998. Here, on one hand, its concept is restricted to the purely dynamic effects, while on the other, the transformation of system components, taking place in the course of the exothermic chemical reaction to raise pressure, are taken into account by the exothermic stage.
Technical Paper

Prospects for Combustion in Piston Engines

2002-03-04
2002-01-0999
Presented here is a reportage of the panel debate on the proposition: “Is there a future for internal combustion engines beyond the technologies of Otto and Diesel?,” held at the SAE 2001 Congress. This is preceded by a recount of all the panel discussions on the future of combustion in engines, which have taken place at the SAE Congresses since 1997. In a commentary following the reportage, a prospective view of the future is provided. It puts forth the concept that the technology, inherited over a hundred years ago from Otto and Diesel, by which the exothermic process of combustion is executed in an engine cylinder, can be advanced significantly by adopting the best that modern micro-electronic and MEMS technology can offer.
X