Refine Your Search

Topic

Search Results

Technical Paper

A Cylinder Pressure Correction Method Based on Calculated Polytropic Exponent

2017-10-08
2017-01-2252
The acquisition of more authentic cylinder pressure data is the basis of engine combustion analysis. Due to the multiple advantages, quartz piezoelectric pressure transducers are generally applied to the measurement of the cylinder pressure. However, these transducers can only produce dynamic cylinder pressure data which may be significantly different from the actual values. Thus, the cylinder pressure data need to be corrected through a certain method, while different cylinder pressure correction methods will cause result divergences of the combustion analysis. This paper aims to acquire a proper cylinder pressure correction method by carrying out theoretical analysis based on the polytropic process in the compression stroke as well as the experimental research of the cylinder pressure of a turbocharged eight-cylinder diesel engine.
Technical Paper

A Dynamic Filtration Model for the Power-shift Steering Transmission

2016-04-05
2016-01-1139
Within the hydraulic shifting circuit of power-shift steering transmission, the performance of filter is generally characterized by the theoretical filtration ratio. However in practical work, the actual filtration ratio is far less than the theoretical ratio. On the basis of investigation on the structural characteristics, the oil flowing distribution and the filter mechanisms, the re-filtering rate ω and recontaminative rate θ are defined to simulate the actual filtering process. Therefore, the dynamic filtration ratio is modelled and simulated in MATLAB/Simulink to investigate that how the filtering rate ω and θ influence the dynamic filtration ratio and the deviation between the dynamic ratio and theoretical ratio. Afterwards, the variation of dynamic filtration ratio is tested through a filtration experiment under the circumstances of various flow rate, temperature and pressure.
Technical Paper

A Novel Driver Model for Real-time Simulation on Electric Powertrain Test Bench

2017-10-08
2017-01-2460
In this paper, a novel driver model is proposed to track vehicle speed in MIL (Model-in-the-Loop) test system, which has structural consistency with HIL (Hardware-in-the-Loop) test system. First, the MIL test system which contains models of driver, vehicle and test bench is established. Second, according to the connections of the established models in Matlab/Simulink environment, the vehicle speed is calculated in vehicle model. Emphatically, through the deviation between driving cycle speed and calculated vehicle speed, PI controller in driver model adjusts the vehicle speed to ideal point through sending the torque command to drive motor, the ILC (Iterative Learning Control) controller modifies and stores P value of PI controller. Then, in order to obtain the better modification of PI controller, iterative learning control algorithm is deeply researched in term of types and parameters.
Journal Article

A Semi-Detailed Chemical Kinetic Mechanism of Acetone-Butanol-Ethanol (ABE) and Diesel Blends for Combustion Simulations

2016-04-05
2016-01-0583
With the development of advanced ABE fermentation technology, the volumetric percentage of acetone, butanol and ethanol in the bio-solvents can be precisely controlled. To seek for an optimized volumetric ratio for ABE-diesel blends, the previous work in our team has experimentally investigated and analyzed the combustion features of ABE-diesel blends with different volumetric ratio (A: B: E: 6:3:1; 3:6:1; 0:10:0, vol. %) in a constant volume chamber. It was found that an increased amount of acetone would lead to a significant advancement of combustion phasing whereas butanol would compensate the advancing effect. Both spray dynamic and chemistry reaction dynamic are of great importance in explaining the unique combustion characteristic of ABE-diesel blend. In this study, a semi-detailed chemical mechanism is constructed and used to model ABE-diesel spray combustion in a constant volume chamber.
Technical Paper

A Study of Calibration of Electronic-controlled Injector Employed in High Pressure Common Rail System

2008-06-23
2008-01-1742
In order to meet the need of high pressure common rail diesel engine, calibration for injection quantity and basic MAP of electronic-controlled injector are made. Combining with testing data, influencing factors for consistency and identity of injecting fuel in electronic-controlled injector are analyzed, in the condition of small quantity, controlled-pressure undulation quantity and injecting pulse revising are presented to achieve the respective demand. Primary basic map for common rail pressure and injecting fuel are fixed with alterable step method, and calibration of fuel quantity MAP is made on bench test. Finally test of electronic-controlled injector equipped in diesel engine is finished, testing result showed that calibration process and method are reasonable.
Technical Paper

Analysis of Combustion and Particulate Emissions when Hydrogen is Aspirated into a Gasoline Direct Injection Engine

2010-04-12
2010-01-0580
A single-cylinder Gasoline Direct Injection Engine (GDI) engine with a centrally mounted spray-guided injection system (150 bar fuel pressure) has been operated with stoichiometric and rich mixtures. The base fuel was 65% iso-octane and 35% toluene; hydrogen was aspirated into a plenum in the induction system, and its equivalence ratios were set to 0, 0.02, 0.05 and 0.1. Ignition timing sweeps were conducted for each operating point. Combustion was speeded up by adding hydrogen as expected. In consequence the MBT ignition advance was reduced, as were cycle-by-cycle variations in combustion. Adding hydrogen led to the expected reduction in IMEP as the engine was operated at a fixed manifold absolute pressure (MAP). An engine model has also been set up using WAVE. Particulate Matter (PM) emissions were measured with a Cambustion DMS500 particle sizer.
Technical Paper

Analysis on the Influence of Key Parameters of Control Valve on the Performance Characteristics of Electromagnetic Injector

2017-10-08
2017-01-2310
The control valve is the most important implementation part of a high pressure common rail system, and its flow characteristics have a great influence on the performance of an injector. In this paper, based on the structure and the working principle of an electromagnetic injector in a high pressure common rail system, a simulation model of the injector is established by AMESim software. Some key parameters of the control valve, including the volume of the control chamber, the diameter of the orifice Z (feeding orifice), the diameter of the orifice A (discharge orifice) and the hole diameter of the fuel diffusion hole are studied by using this model. The results show that these key structural parameters of the control valve have a great influence on the establishment of the control chamber pressure and the action of the needle valve.
Technical Paper

Combustion Characteristics of Diesel Spray with Temporally-Splitting High-Pressure Injection

2015-11-17
2015-32-0825
The effect of temporally-splitting high pressure injection on Diesel spray combustion and soot formation processes was studied by using the high-speed video camera. The spray was injected by the single-hole nozzle with a hole diameter of 0.11mm into the high-pressure and high-temperature constant volume vessel. The free spray and the spray impingement on the two dimensional (2D) piston cavity wall were examined. Injection pressures of 100 and 160 MPa for the single injection and 160 MPa for the split injection were selected. The flame structure and soot formation process were examined by using the two-color pyrometry. The soot generated in the flame under the split injection under 160 MPa becomes higher than that of the single injection under 160 MPa.
Journal Article

Combustion and Emission Characteristics of a Heavy-Duty Diesel Engine at Idle at Various Altitudes

2013-04-08
2013-01-1516
This present paper described an experimental study on the combustion and emission characteristics of a diesel engine at idle at different altitudes. Five altitudes ranging from 550m to up to 4500m were investigated. Combustion parameters including in-cylinder pressure and temperature, heat release, fuel mass burning and so forth, together with emission factors including CO, HC, NOx and PM were tested and analyzed. The result of on-board measurement manifested that in-cylinder pressure descended consistently with the rising of altitude, while both the maximum in-cylinder temperature and exhaust temperature ascended with the altitude. It was found that ignition delay was lengthened at higher altitude, but the combustion duration became shorter. The crank angle towards 90% fuel burnt has hardly changed with the variation of altitude. As for heat release, the difference of slopes observed at different altitudes was quite slight.
Technical Paper

Comparison of Regulated Emissions and Particulate Matter of Gasoline/CNG Dual-Fuel Taxi Over New European Driving Cycle

2014-04-01
2014-01-1467
Compressed natural gas (CNG) is widely used as an alternative option in spark ignition engines because of its better fuel economy and in part cleaner emissions. To cope with the haze weather in Beijing, about 2000 gasoline/CNG dual-fuel taxis are servicing on-road. According to the government's plan, the volume of alternative fuel and pure electric vehicle will be further increased in the future. Thus, it is necessary to conduct an evaluation on the effectiveness of alternative fuel on curbing vehicular emissions. This research examined the regulated emissions and particulate matter of gasoline/CNG dual-fuel taxi over New European Driving Cycle (NEDC). Emission tests in gasoline- and CNG-fuelled, cold- and warm-start modes were done for all five taxies. Test vehicles, Hyundai Elantra, are powered by 1.6L spark-ignited engines incorporated with 5-gear manual gearboxes.
Technical Paper

Crank System Coupling Simulation between Dynamics of Flexible Multi-Body and Hydrodynamic Lubrication

2007-08-05
2007-01-3484
A flexible multi-body system dynamics model of crank system is established based on MSC/ADAMS with the purpose of modeling the crank in internal-combustion engine accurately. The film hydrodynamics model is built up through linking ADAMS and elasticity hydrodynamics subroutines. Coupling analysis between multi-flexible body system dynamics and hydrodynamic lubrication of crank system is processed. Results between the model with the function of film and without the function are compared. Then the journal center loci are given. The effects of different factors such as pressure, temperature, rotating speed and load on the journal center loci are also analyzed.
Technical Paper

Development of Effective Bicycle Model for Wide Ranges of Vehicle Operations

2014-04-01
2014-01-0841
This paper proposes an effective nonlinear bicycle model including longitudinal, lateral, and yaw motions of a vehicle. This bicycle model uses a simplified piece-wise linear tire model and tire force tuning algorithm to produce closely matching vehicle trajectory compared to real vehicle for wide vehicle operation ranges. A simplified piece-wise tire model that well represents nonlinear tire forces was developed. The key parameters of this model can be chosen from measured tire forces. For the effects of dynamic load transfer due to sharp vehicle maneuvers, a tire force tuning algorithm that dynamically adjusts tire forces of the bicycle model based on measured vehicle lateral acceleration is proposed. Responses of the proposed bicycle model have been compared with commercial vehicle dynamics model (CarSim) through simulation in various vehicle maneuvers (ramp steer, sine-with-dwell).
Technical Paper

Dynamic Analysis of Wiper System and Noise Prediction of Blade Reverse

2015-03-30
2015-01-0106
Wiper noise generated in the wiping process is one of the main influence factors affecting the driving comfort. Since the dynamic contact pressure of the contact between a blade and a windshield glass is difficult to be measured, it is also difficult to predict the degree of the wiper noise. In this paper, in the view of the reversal noise problem of a passenger-vehicle windscreen wiper system, the system dynamic models of the both wipers on the sides of the driver and copilot were built as considering the blade deformation and the elastic contact between the blades and the windscreen glass, including the crank pivot, the four linkage mechanism, the wiper blades, the wiper arms and the windscreen glass. The motion of the wiper system and the pressure distributions between the blades and the windscreen glass were analyzed under the half-dry condition.
Technical Paper

Effect of Hydrogen Fraction on Laminar Flame Characteristics of Methanol-Hydrogen-Air Mixture at Atmospheric Pressure

2017-10-08
2017-01-2277
Methanol has been regarded as a potential transportation fuel due to its advanced combustion characteristics and flexible source. However, it is suffering from misfire and high HC emissions problems under cold start and low load conditions either on methanol SI engine or on methanol/diesel dual fuel engine. Hydrogen is a potential addition that can enhance the combustion of methanol due to its high flammability and combustion stability. In the current work, the effect of hydrogen fraction on the laminar flame characteristics of methanol- hydrogen-air mixture under varied equivalence ratio was investigated on a constant volume combustion chamber system coupled with a schlieren setup. Experiments were performed over a wide range of equivalence ratio of the premixed charge, varied from 0.8 to 1.4, as well as different hydrogen fraction, 0%, 5%, 10%, 15% and 20% (n/n). All tests were carried out at fixed temperature and pressure of 400K and 0.1MPa.
Technical Paper

Experimental Study on the Effects of Intake Parameters on Diesel LTC Combustion and Emission

2017-10-08
2017-01-2259
The diesel low temperature combustion (LTC) can keep high efficiency and produce low emission. Which has been widely studied at home and abroad in recent years. The combustion control parameters, such as injection pressure, injection timing, intake oxygen concentration, intake pressure, intake temperature and so on, have an important influence on the combustion and emission of diesel LTC. Therefore, to realize different combustion modes and combustion mode switch of diesel engine, it is necessary to accurately control the injection parameters and intake parameters of diesel engine. In this work, experimental study has been carried out to analyze the effect of intake oxygen concentration, intake pressure and intake temperature in combustion and emission characteristics of diesel LTC, such as in-cylinder pressure, temperature, heat release rate, NOx and soot emission.
Technical Paper

Experimental and Computational Analysis of Impact of Self Recirculation Casing Treatment on Turbocharger Compressor

2010-04-12
2010-01-1224
Self recirculation casing treatment has been showed to be an effective technique to extend the flow range of the compressor. However, the mechanism of its surge extension on turbocharger compressor is less understood. Investigation and comparison of internal flow filed will help to understand its impact on the compressor performance. In present study, experimentally validated CFD analysis was employed to study the mechanism of surge extension on the turbocharger compressor. Firstly a turbocharger compressor with replaceable inserts near the shroud of the impeller inlet was designed so that the overall performance of the compressor with and without self recirculation casing treatment could be tested and compared. Two different self recirculation casing treatments had been tested: one is conventional self recirculation casing treatment and the other one has deswirl vanes inside the casing treatment passage.
Technical Paper

Experimental and Kinetic Investigation of Pressure and Temperature Effects on Burning Characteristics of n-Heptane/Air/Hydrogen up to Near Lean Burn Limits

2020-04-14
2020-01-0343
Incomplete-combustion and misfire are the hurdles in internal combustion engines to run on ultra-lean mixture, whereas high thermal efficiency has been achieved at lean mixture. The burning characteristics of n-heptane with 0% and 30% hydrogen additions were studied at 393K-453K and 100kPa-300kPa up to near lean burn limits, λ=0.8-2.0. The flame appeared in spherical shape only by 37-mJ ignition energy (IE) at λ=0.8-1.5, while further lean mixture, ≥1.6, could be ignited only by 3000-mJ with the distorted flame shape. The flame buoyed in the mixture when burning velocity calculated by kinetic mechanism was equal or less than 19.83 cm/s at the initial conditions of λ=1.8, 393K and 100kPa. The thermal instability under impact of initial pressure and temperature was higher at lean mixture than at stoichiometric mixture.
Technical Paper

Experimental and Numerical Study on the Fuel Pressure Fluctuations Aroused by the Injector for the Electronic Unit Pump System

2017-10-08
2017-01-2217
The electronic unit pump system, which is widely applied to the heavy-duty diesel engine, belongs to the pulsating high-pressure fuel injection system, and the fuel pressure fluctuations have an essential influence on the spray and combustion in the internal combustion engine. Besides, pressure fluctuations are always aroused by the motion of actuators, such as the injector or other control valves, so it is also an advantage for fault diagnosis and feedback control to ascertain the relationship between the pressure fluctuation and the motion of the actuator. In this study, experiments and 1D-simulation were carried on to investigate the fuel pressure fluctuation characteristics and their correlations with the transient motion of the needle valve in the injector.
Technical Paper

Fluid-Solid Coupled Heat Transfer Investigation of Wet Clutches

2017-10-08
2017-01-2442
The prediction of temperature distribution and variation of oil-cooled sliding disk pair is essential for the design of wet clutches and brakes in a vehicle transmission system. A two-phase coupled heat transfer model is established in the study and some fluid-solid coupled heat transfer simulations are performed to investigate the thermal behaviors of wet clutch during sliding by CFD method. Both cooling liquid and grooved solid disks are contained in the heat transfer model and the heat convection due to the cooling liquid in the radial grooves is also considered by fluid-solid coupled transient heat transfer simulations. The temperature distribution and variation of the grooved disk are discussed and analyzed in detail. The results indicate that the temperature distribution on the grooved disk is nonuniform. The temperature within the middle radius area is higher than that in the inner and outer radius area.
Technical Paper

Fuzzy Observer for Nonlinear Vehicle System Roll Behavior with Coupled Lateral and Vertical Dynamics

2018-04-03
2018-01-0559
The study of vehicle state estimation performance especially on the aspect of observer-based control for improving vehicle ride comfort and road handling is a challenging task for vehicle industry. Since vehicle roll behavior with various road excitations act an important part of driving safety, how to accurately obtain vehicle state under various driving scenes are of great concern. However, previous researches seldom consider coupling relation between vehicle vertical and lateral response with steering input under various road excitation. To address this issue, comprehension analyses on vehicle roll state estimation with coupled input are present in this paper. A full-car nonlinear Takagi-Sugeno (T-S) fuzzy model is first created to describe vehicle lateral and vertical coupling dynamics.
X