Refine Your Search

Topic

Affiliation

Search Results

Technical Paper

A Comparative Study of Two RVE Modelling Methods for Chopped Carbon Fiber SMC

2017-03-28
2017-01-0224
To advance vehicle lightweighting, chopped carbon fiber sheet molding compound (SMC) is identified as a promising material to replace metals. However, there are no effective tools and methods to predict the mechanical property of the chopped carbon fiber SMC due to the high complexity in microstructure features and the anisotropic properties. In this paper, a Representative Volume Element (RVE) approach is used to model the SMC microstructure. Two modeling methods, the Voronoi diagram-based method and the chip packing method, are developed to populate the RVE. The elastic moduli of the RVE are calculated and the two methods are compared with experimental tensile test conduct using Digital Image Correlation (DIC). Furthermore, the advantages and shortcomings of these two methods are discussed in terms of the required input information and the convenience of use in the integrated processing-microstructure-property analysis.
Technical Paper

A Cylinder Pressure Correction Method Based on Calculated Polytropic Exponent

2017-10-08
2017-01-2252
The acquisition of more authentic cylinder pressure data is the basis of engine combustion analysis. Due to the multiple advantages, quartz piezoelectric pressure transducers are generally applied to the measurement of the cylinder pressure. However, these transducers can only produce dynamic cylinder pressure data which may be significantly different from the actual values. Thus, the cylinder pressure data need to be corrected through a certain method, while different cylinder pressure correction methods will cause result divergences of the combustion analysis. This paper aims to acquire a proper cylinder pressure correction method by carrying out theoretical analysis based on the polytropic process in the compression stroke as well as the experimental research of the cylinder pressure of a turbocharged eight-cylinder diesel engine.
Technical Paper

A Dynamic Filtration Model for the Power-shift Steering Transmission

2016-04-05
2016-01-1139
Within the hydraulic shifting circuit of power-shift steering transmission, the performance of filter is generally characterized by the theoretical filtration ratio. However in practical work, the actual filtration ratio is far less than the theoretical ratio. On the basis of investigation on the structural characteristics, the oil flowing distribution and the filter mechanisms, the re-filtering rate ω and recontaminative rate θ are defined to simulate the actual filtering process. Therefore, the dynamic filtration ratio is modelled and simulated in MATLAB/Simulink to investigate that how the filtering rate ω and θ influence the dynamic filtration ratio and the deviation between the dynamic ratio and theoretical ratio. Afterwards, the variation of dynamic filtration ratio is tested through a filtration experiment under the circumstances of various flow rate, temperature and pressure.
Technical Paper

A Game Theory-Based Model Predictive Controller Considering Intension for Mandatory Lane Change

2020-12-30
2020-01-5127
In recent years, with the increase of traffic accidents and traffic jams, lane change, as one of the most important and commonly automatic driving operations for autonomous vehicles, is receiving attention in academia. It is considered to be one of the important solutions that play an important role in improving road traffic safety and efficiency. However, most existing lane-changing models are rule-based lane-changing models. These models only assume a one-direction impact of surrounding vehicles on the lane-changing vehicle. In fact, lane change is a process of mutual interaction between vehicles due to the complexity and uncertainty of the traffic environment. Moreover, the safety and efficiency of existing lane-changing decision algorithms need to be improved. In this paper, we proposed a multivehicle cooperative control approach with a distributed control structure to control the model.
Technical Paper

A General Selection Method for the Compressor of the Hydrogen Internal Combustion Engine with Turbocharger

2017-03-28
2017-01-1025
Hydrogen is a promising energy carrier because it is characterized by a fast combustion velocity, a wide range of sources, and clean combustion products. A hydrogen internal combustion engine (H2ICE) with a turbocharger has been used to solve the contradiction of power density and control NOx. However, the selection of a H2ICE compressor with a turbocharger is very different from traditional engines because of gas fuel. Hydrogen as a gas fuel has the same volume as its cylinder and thus increases pressure and reduces the mass flow rate of air in cylinder for a port fuel injection-H2ICE (PFI-H2ICE). In this study, a general method involving a H2ICE with a turbocharger is proposed by considering the effect of hydrogen on cylinders. Using this method, we can calculate the turbocharged pressure ratio and mass flow rate of air based on the target power and general parameters. This method also provides a series of intake temperatures of air before calculation to improve accuracy.
Technical Paper

A Kinetic Modeling and Engine Simulation Study on Ozone-Enhanced Ammonia Oxidation

2023-10-31
2023-01-1639
Ammonia has attracted the attention of a growing number of researchers in recent years. However, some properties of ammonia (e.g., low laminar burning velocity, high ignition energy, etc.) inhibit its direct application in engines. Several routes have been proposed to overcome these problems, such as oxygen enrichment, partial fuel cracking strategy and co-combustion with more reactive fuels. Improving the reactivity of ammonia from the oxidizer side is also practical. Ozone is a highly reactive oxidizer which can be easily and rapidly generated through electrical plasma and is an effective promoter applicable for a variety of fuels. The dissociation reaction of ozone increases the concentration of reactive radicals and promotes chain-propagating reactions. Thus, obtaining accurate rate constants of reactions related to ozone is necessary, especially at elevated to high pressure range which is closer to engine-relevant conditions.
Technical Paper

A Mapless Trajectory Prediction Model with Enhanced Temporal Modeling

2024-04-09
2024-01-2874
The prediction of agents' future trajectory is a crucial task in supporting advanced driver-assistance systems (ADAS) and plays a vital role in ensuring safe decisions for autonomous driving (AD). Currently, prevailing trajectory prediction methods heavily rely on high-definition maps (HD maps) as a source of prior knowledge. While HD maps enhance the accuracy of trajectory prediction by providing information about the surrounding environment, their widespread use is limited due to their high cost and legal restrictions. Furthermore, due to object occlusion, limited field of view, and other factors, the historical trajectory of the target agent is often incomplete This limitation significantly reduces the accuracy of trajectory prediction. Therefore, this paper proposes ETSA-Pred, a mapless trajectory prediction model that incorporates enhanced temporal modeling and spatial self-attention.
Journal Article

A Methodology to Integrate a Nonlinear Shock Absorber Dynamics into a Vehicle Model for System Identification

2011-04-12
2011-01-0435
High fidelity mathematical vehicle models that can accurately capture the dynamics of car suspension system are critical in vehicle dynamics studies. System identification techniques can be employed to determine model type, order and parameters. Such techniques are well developed and usually used on linear models. Unfortunately, shock absorbers have nonlinear characteristics that are non-negligible, especially with regard the vehicle's vertical dynamics. In order to effectively employ system identification techniques on a vehicle, a nonlinear mathematical shock absorber model must be developed and then coupled to the linear vehicle model. Such an approach addresses the nonlinear nature of the shock absorber for system identification purposes. This paper presents an approach to integrate the nonlinear shock absorber model into the vehicle model for system identification.
Technical Paper

A Multimodal States Based Vehicle Descriptor and Dilated Convolutional Social Pooling for Vehicle Trajectory Prediction

2021-01-13
2020-01-5113
Precise trajectory prediction of surrounding vehicles is critical for decision-making of autonomous vehicles, and learning-based approaches are well recognized for the robustness. However, state-of-the-art learning-based methods ignore (1) the feasibility of the vehicle’s multimodal state information for prediction and (2) the mutually exclusive relationship between the global traffic scene receptive fields and the local position resolution when modeling vehicles’ interactions, which may influence prediction accuracy. Therefore, we propose a “vehicle descriptor”-based long short-term memory (LSTM) model with the dilated convolutional social pooling (VD+DCS-LSTM) to cope with the above issues.
Technical Paper

A New Positioning Device Designed for Aircraft Automated Alignment System

2019-09-16
2019-01-1883
Accurate and fast positioning of large aircraft component is of great importance for Automated Alignment System. The Ball joint is a widely-used mechanical device connecting the aircraft component and positioners. However, there are some shortcomings for the device in man-machine engineering, such as the entry state of the ball-head still needs to be confirmed by the workers and then switched to the locking state manually. To solve above problems, a new positioning mechanism is present in this paper, which consists of a ball-head and a ball-socket. The new device is equipped with a monocular vision system, in which a calibrated industrial camera is used to collect the images of the ball-head. And then, the 3-D coordinate of the ball-head center is calculated by a designed algorithm, guiding the positioner to capture the ball-head. Once the ball-head gets into the ball-socket, the pneumatic system will drive the pistons to move to the specified location.
Technical Paper

A New Rotating Wedge Clutch Actuation System

2017-10-08
2017-01-2441
Rotating clutches play an important role in automatic transmissions (AT), dual-clutch transmissions (DCT) and hybrid transmissions. It is very important to continually improve the transmission systems in the areas such as simplifying actuator designs, reducing cost and increasing controllability. A new concept of electrical motor driven actuation using a wedge mechanism, a wedge clutch, demonstrates potential benefits. This wedge clutch has the characteristics of good mechanical advantage, self-reinforcement, and faster and more precise controllability using electrical motor. In this paper, a new rotating wedge clutch is proposed. It presents a challenge since the motor actuator has to be stationary while the clutch piston is rotating. A new mechanism to connect the motor to the wedge piston, including dual-plane bearings and two mechanical ramp linkages, is studied. The design and verification of the physical structure of the actuator are discussed in detail in the paper.
Technical Paper

A Novel Approach to Constructing Reactivity-Based Simplified Combustion Model for Dual Fuel Engine

2023-10-31
2023-01-1627
To achieve higher efficiencies and lower emissions, dual-fuel strategies have arisen as advanced engine technologies. In order to fully utilize engine fuels, understanding the combustion chemistry is urgently required. However, due to computation limitations, detailed kinetic models cannot be used in numerical engine simulations. As an alternative, approaches for developing reduced reaction mechanisms have been proposed. Nevertheless, existing simplified methods neglecting the real engine combustion processes, which is the ultimate goal of reduced mechanism. In this study, we propose a novel simplified approach based on fuel reactivity. The high-reactivity fuel undergoes pyrolysis first, followed by the pyrolysis and oxidation of the low-reactivity fuel. Therefore, the simplified mechanism consists of highly lumped reactions of high-reactivity fuel, radical reactions of low-reactivity fuel and C0-C2 core mechanisms.
Technical Paper

A Novel Driver Model for Real-time Simulation on Electric Powertrain Test Bench

2017-10-08
2017-01-2460
In this paper, a novel driver model is proposed to track vehicle speed in MIL (Model-in-the-Loop) test system, which has structural consistency with HIL (Hardware-in-the-Loop) test system. First, the MIL test system which contains models of driver, vehicle and test bench is established. Second, according to the connections of the established models in Matlab/Simulink environment, the vehicle speed is calculated in vehicle model. Emphatically, through the deviation between driving cycle speed and calculated vehicle speed, PI controller in driver model adjusts the vehicle speed to ideal point through sending the torque command to drive motor, the ILC (Iterative Learning Control) controller modifies and stores P value of PI controller. Then, in order to obtain the better modification of PI controller, iterative learning control algorithm is deeply researched in term of types and parameters.
Technical Paper

A Novel Dual Nonlinear Observer for Vehicle System Roll Behavior with Lateral and Vertical Coupling

2019-04-02
2019-01-0432
The study of vehicle coupling state estimation accuracy especially in observer-based vehicle chassis control for improving road handling and ride comfort is a challenging task for vehicle industry under various driving conditions. Due to a large amount of life safety arising from vehicle roll behavior, how to precisely acquire vehicle roll state and rapidly provide for the vehicle control system are of great concern. Simultaneously, uncertainty is unavoidable for various aspects of a vehicle system, e.g., varying sprung mass, moment of inertia and position of the center of gravity. To deal with the above issues, a novel dual observer approach, which combines adaptive Unscented Kalman Filter (AUKF) and Takagi-Sugeno (T-S), is proposed in this paper. A full-car nonlinear model is first established to describe vehicle lateral and vertical coupling roll behavior under various road excitation.
Technical Paper

A Novel Method Studying the Effects of Journal Straightness in Three-Dimensional Space on Lubrication of Bearing

2017-03-28
2017-01-1347
Conventionally, the engines are calibrated under the assumption that engines will be made exactly to the prints, and all the engines from the same batch will be identical. However, engine-to-engine variations do exist which will affect the engine performances, and part-to-part variations, i.e., the tolerance, is an important factor leading to engine-to-engine variations. There are researches conducted on the influence of dimensional tolerances on engine performance, however, the impact of straightness, which is an important geometric tolerance, on lubrication is an unsolved issue. This study presents a systematic method to model the straightness and to analyze its effects on the friction loss. The bearing model is built based on elastohydrodynamic (EHD) theory. Meanwhile a novel modeling method to represent any form of straightness in three-dimensional space is proposed.
Technical Paper

A Novel Normal Measurement Method for Robotic Drilling and Countersinking

2017-09-19
2017-01-2088
A novel normal measurement device for robotic drilling and countersinking has been developed. This device is mainly composed of three contact displacement sensors and a spherically compliant clamp pad. The compliance of the clamp pad allows it to be perpendicular to the part when the Multi-Function End Effector (MFEE) drives it to clamp the part surface prior to drilling, while the displacement sensors are used to measure the movement of the clamp pad relative to the MFEE. Once the sensors’ position is calibrated, the rotation angle of the clamp pad can be calculated by the displacement of the sensors. Then, the normal adjustment of MFEE is obtained, and the adjustment process can be achieved by the Rotation Tool Center Point (RTCP) function of robot. Thus, an innovative method based on laser tracker to identify the position of sensors is proposed.
Technical Paper

A SOM-Based Trajectory Planning Analysis Method for Intelligent Groups System

2023-12-31
2023-01-7107
Aiming at the problem of weak communication, strong interference, cross-domain, and large-scale environment, it is difficult to achieve efficient decision-making and planning in the collaborative operation of intelligent groups. Based on the SOM algorithm, this paper proposes a dual-selection allocation and distributed vectorized trajectory planning. Form a collaborative planning algorithm that can be updated with high frequency and a rational decision-making mechanism. Provide technical support for collaborative search and detection of intelligent groups. At the same time, based on the principle of minimum consistency, this paper proposes a clock synchronization model under spatial coordination and conducts simulation experiments to verify it. The result proves the efficiency and practicability of the collaborative intelligent decision-making plan proposed in this paper.
Journal Article

A Semi-Detailed Chemical Kinetic Mechanism of Acetone-Butanol-Ethanol (ABE) and Diesel Blends for Combustion Simulations

2016-04-05
2016-01-0583
With the development of advanced ABE fermentation technology, the volumetric percentage of acetone, butanol and ethanol in the bio-solvents can be precisely controlled. To seek for an optimized volumetric ratio for ABE-diesel blends, the previous work in our team has experimentally investigated and analyzed the combustion features of ABE-diesel blends with different volumetric ratio (A: B: E: 6:3:1; 3:6:1; 0:10:0, vol. %) in a constant volume chamber. It was found that an increased amount of acetone would lead to a significant advancement of combustion phasing whereas butanol would compensate the advancing effect. Both spray dynamic and chemistry reaction dynamic are of great importance in explaining the unique combustion characteristic of ABE-diesel blend. In this study, a semi-detailed chemical mechanism is constructed and used to model ABE-diesel spray combustion in a constant volume chamber.
Technical Paper

A Study of Calibration of Electronic-controlled Injector Employed in High Pressure Common Rail System

2008-06-23
2008-01-1742
In order to meet the need of high pressure common rail diesel engine, calibration for injection quantity and basic MAP of electronic-controlled injector are made. Combining with testing data, influencing factors for consistency and identity of injecting fuel in electronic-controlled injector are analyzed, in the condition of small quantity, controlled-pressure undulation quantity and injecting pulse revising are presented to achieve the respective demand. Primary basic map for common rail pressure and injecting fuel are fixed with alterable step method, and calibration of fuel quantity MAP is made on bench test. Finally test of electronic-controlled injector equipped in diesel engine is finished, testing result showed that calibration process and method are reasonable.
Technical Paper

A Study of Energy Enhanced Multi-Spark Discharge Ignition in a Constant-Volume Combustion Chamber

2019-04-02
2019-01-0728
Multi-spark discharge (MSD) ignition is widely used in high-speed internal combustion engines such as racing cars, motorcycles and outboard motors in attempts to achieve multiple sparks during each ignition. In contrast to transistor coil ignition (TCI) system, MSD system can be greatly shortened the charging time in a very short time. However, when the engine speed becomes higher, the ignition will be faster, electrical energy stored in the ignition system will certainly become less, especially for MSD system. Once the energy released into the spark plug gap can’t be guaranteed sufficiently, ignition will become more difficult, and it will get worse in some harsh environment such as strong turbulence or lean fuel conditions. With these circumstances, the risks of misfire and partial combustion will increase, which can deteriorate the power outputs and exhaust emissions of internal combustion engine.
X