Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Double Injection Strategies for Ethanol-Fuelled Gasoline Compression Ignition (GCI) Combustion in a Single-Cylinder Light-Duty Diesel Engine

2016-10-17
2016-01-2303
Ethanol has been selected as a fuel for gasoline compression ignition (GCI) engines realising partially premixed charge combustion, considering its higher resistance to auto-ignition, higher evaporative cooling and oxygen contents than widely used gasoline, all of which could further improve already high efficiency and low smoke/NOx emissions of GCI engines. The in-cylinder phenomena and engine-out emissions were measured in a single-cylinder automotive-size common-rail diesel engine with a special emphasis on double injection strategies implementing early first injection near BDC and late second injection near TDC.
Technical Paper

In-Cylinder Soot Reduction Using Microwave Generated Plasma in an Optically Accessible Small-Bore Diesel Engine

2018-04-03
2018-01-0246
The present study explores the effect of in-cylinder generated non-thermal plasma on hydroxyl and soot development. Plasma was generated using a newly developed Microwave Discharge Igniter (MDI), a device which operates based on the principle of microwave resonation and has the potential to accentuate the formation of active radical pools as well as suppress soot formation while stimulating soot oxidation. Three diagnostic techniques were employed in a single-cylinder small-bore optical diesel engine, including chemiluminescence imaging of electronically excited hydroxyl (OH*), planar laser induced fluorescence imaging of OH (OH-PLIF) and planar laser induced incandescence (PLII) imaging of soot. While investigating the behaviour of MDI discharge under engine motoring conditions, it was found that plasma-induced OH* signal size and intensity increased with higher in-cylinder pressures albeit with shorter lifetime and lower breakdown consistency.
Technical Paper

Influence of Engine Speed on Gasoline Compression Ignition (GCI) Combustion in a Single-Cylinder Light-Duty Diesel Engine

2017-03-28
2017-01-0742
The present study aims to evaluate the effects of engine speed on gasoline compression ignition (GCI) combustion implementing double injection strategies. The double injection comprises of near-BDC first injection for the formation of a premixed charge and near-TDC second injection for the combustion phasing control. The engine performance and emissions testing of GCI combustion has been conducted in a single-cylinder light-duty diesel engine equipped with a common-rail injection system and fuelled with a conventional gasoline with 91 RON. The double injection strategy was investigated for various engine speeds ranging 1200~2000 rpm and the second injection timings between 12°CA bTDC and 3°CA aTDC.
Technical Paper

Triple Injection Strategies for Gasoline Compression Ignition (GCI) Combustion in a Single-Cylinder Small-Bore Common-Rail Diesel Engine

2019-04-02
2019-01-1148
Implementing triple injection strategies in partially premixed charge-based gasoline compression ignition (GCI) engines has shown to achieve improved engine efficiency and reduced NOx and smoke emissions in many previous studies. While the impact of the triple injections on engine performance and engine-out emissions are well known, their role in controlling the mixture homogeneity and charge premixedness is currently poorly understood. The present study shows correspondence between the triple injection strategies and mixture homogeneity/premixedness through the experimental tests of second/third injection proportion and their timing variations with an aim to explain the observed GCI engine performance and emission trends. The experiments were conducted in a single cylinder, small-bore common-rail diesel engine fuelled with a commercial gasoline fuel of 95 research octane number (RON) and running at 2000 rpm and 830 kPa indicated mean effective pressure conditions.
X