Refine Your Search

Topic

Author

Search Results

Technical Paper

A Characterization of Accelerations Induced on the Free Floating Testbed During Parabolic Flight

1995-07-01
951473
The goal of the Controlled Ecological Life Support System (CELSS) Program at NASA Ames Research Center is to develop life support systems that will support humans during long duration space missions. These life support systems must be able to regenerate air and water for the crew while at the same time minimize power consumption and disposables. A series of microgravity compatible subsystems will be required to meet this goal. However, operating these subsystems in microgravity raises serious technical problems. Existing subsystems may need to be refined or new technologies may need to be developed to overcome these problems. To evaluate and test these new subsystems and technologies, a series of KC-135 precursor flights are being flown by members of the CELSS Flight Group. One of the key elements in these flight activities is the free floating testbed (FFTB).
Technical Paper

A More Completely Defined CELSS

1994-06-01
941292
A CELSS has been defined based on current or near-term technology. The CELSS was sized to support the metabolic load of four people on the Moon for ten years. A metabolic load of 14 MJ/person/day is assumed, including an average of 2.6 hr of EVA/person/day. Close to 100% closure of water, and oxygen, and 85% closure of the food loop is assumed. With 15% of the calories supplied from Earth, this should provide adequate dietary variety for the crew along with vitamin and mineral requirements. Other supply and waste removal requirements are addressed. The basic shell used is a Space Station Freedom 7.3 m (24 ft) module. This is assumed to be buried in regolith to provide protection from radiation, meteoroids, and thermal extremes. A solar dynamic power system is assumed, with a design life of 10 years delivering power at 368 kWh/kg. Initial estimates of size are that 73 m2 of plant growth area are required, giving a plant growth volume of about 73 m3.
Technical Paper

Advanced Thermal Control Coatings for Use in Low Earth Orbit

1994-06-01
941432
A method for applying an organic coating to Z-93, an inorganic white thermal control paint, was developed to protect Z-93 from contamination and damage. A layer of FEP Teflon™ was applied over Z-93 to provide a smooth, continuous surface without adversely affecting its optical properties. Additionally, new low-absorptance, controlled-emittance thermal control paints were developed for low Earth orbit (LEO) applications, such as the International Space Station. These paints have a range of infrared emittances from 0.26 to 0.88, and are stable in simulated LEO environments, including atomic oxygen and ultraviolet radiation. Patent applications have been submitted for these concepts.
Technical Paper

Advancements in Long-Life Thermal Control Coatings for Low Earth Orbit Applications

1993-07-01
932229
The Space Station Freedom program requires long-life thermal control coatings that are stable in low Earth orbit (LEO). To provide designers with a variety of coatings and optical properties, improvements were made to existing coatings, and new thermal control coatings were developed. Anodized aluminum was demonstrated to be an acceptable substrate for inorganic thermal control coatings such as Z-93. Mixtures of Z-93 with stable black oxides provided a wide range of optical properties and were stable in a simulated LEO environment. In addition, sulfuric acid anodized aluminum was developed to a production status to provide controlled optical properties for many aluminum alloys.
Technical Paper

Advancements in Regenerative Life Support Waste Water Bioprocessing Technology

1996-07-01
961572
Bioreactor technology for waste water reclamation in a regenerative life support system (RLSS) is currently being developed by a team of NASA and major aerospace companies. To advance this technology, several activities are being performed concurrently; these include conducting small-scale studies and developing computer models. Small-scale studies are being performed to characterize and enhance the bioprocesses occurring within the bioreactor. New bioreactor configurations have been investigated which improved total organic carbon degradation as well as nitrification, the polishing step which converts nitrogenous wastes into forms that are easily removable from the water. Small-scale studies have also been performed using an activated sludge reactor demonstrating that TOC reduction and nitrification can occur in a single reactor. Computer models have been developed to guide the laboratory studies and to assist in full-scale system design.
Technical Paper

Applications of Free-Flying Cameras for Space-Based Operations

1994-06-01
941442
This paper defines the value of free-flying cameras to the Space Station. The use of free-flying cameras is an alternative to reliance on fixed cameras. The analysis is based upon results from recent neutral buoyancy evaluations of a free-flying camera known as the Supplemental Camera and Maneuvering Platform (SCAMP). SCAMP was evaluated for inspection and viewing capabilities that will be required by Space Station. Test results demonstrated that a free-flying camera could be used effectively for inspecting structure, viewing labels, providing views for control of extravehicular robotics (EVR) and for ground assistance during extravehicular activity (EVA) tasks.
Technical Paper

Charlotte™ Robot Technology for Space and Terrestrial Applications

1995-07-01
951520
A novel robot architecture has been developed which promises cost savings in a variety of applications in Space and on Earth. Utilizing cables in order to effect motion in a general workspace provides large weight savings, as well as high end effector stiffness. The architecture has been built and successfully tested in space. The capability of the robotic system to actuate those switches, dials, and buttons expected in space environments, as well as to read displays and transmit video to earth for operator feedback have been proven, and are discussed herein.
Technical Paper

Computer Aided Design and Graphics Techniques for EVA Analysis

1994-06-01
941558
The size and complexity of Space Station has driven the need for an accurate, reliable analytical tool to assess the extravehicular activity (EVA) crew interfaces at the worksite. On previous spacecraft, each worksite was developed and validated through Neutral Buoyancy underwater testing by the crew using mockups. For spacecraft requiring a significant amount of EVA over large areas, like Space Station, the cost of conducting underwater tests for each of the many hundred worksites becomes prohibitive. Therefore, limited testing must be augmented by accurate graphical analysis. The Unigraphics II, which is the Computer Aided Design (CAD) system for the International Space Station Alpha (ISSA) Product Group 1 design, was selected and developed. It has a major advantage of easy and rapid access to the accurate and updated Space Station design. The design can be rapidly obtained electronically from layouts, detail drawings, assembly drawings or the Electronic Development Fixture (EDF).
Technical Paper

Condensate Recycling in Closed Plant Growth Chambers

1994-06-01
941543
Water used in the Controlled Ecological Life Support System (CELSS) Breadboard Project at the Kennedy Space Center is being recycled. Condensation is collected in the air ducts, filtered and deionized, and resupplied to the system for nutrient solutions, supplemental humidification, solvents and diluents. While the system functions well from a process control standpoint, precise and accurate tracking of water movement through the system to answer plant physiological questions is not consistent. Possible causes include hardware errors, undetected vapor loss from chamber leakage, and unmeasured changes in water volume in the plant growth trays.
Technical Paper

Current Riveting/Fastening Methodology and Future Assembly Equipment Philosophy

1996-10-01
961866
This paper is focusing on considerations pertaining to riveting/fastening systems and assembly methodology currently in use for large aircraft fuselage structures. Discussion of process principles on which current systems are based is addressing distribution of rivets along the aircraft structure, riveting/fastening systems and equipment flexibility. An attempt was made to predict the most probable future equipment development trends based on the need for more efficiency in all aircraft structural assembly and in high level and final assembly areas.
Technical Paper

Design and Performance of a 140 KVA, 3 Phase, 230 VAC, Variable Frequency, Solid State Power Controller

1997-06-18
971246
This paper describes the design and testing of a three phase, 200 Amp. per phase, AC power controller intended to replace electromechanical bus tie and cross tie contactors in commercial aircraft electric power systems. In order to design an effective overall electric power system, both the primary transmission subsystem and the secondary distribution subsystem must operate together, controlling the flow of power in a seamless fashion. This is not possible using electromechanical contactors in the primary subsystem.
Technical Paper

Development of a Thermo-Hydraulic Math Model of the Space Station Single-Phase Active Thermal Control System

1995-07-01
951612
A detailed SINDA-FLUINT thermo-hydraulic math model of the International Space Station Alpha single-phase thermal control system has been developed to evaluate the system steady state and transient responses. The model is being used to determine critical system performance characteristics, such as line sizing, flow distribution, and temperatures of critical components. It is also used to support the design of the control system required to maintain set point temperature and a constant system pressure. In the future the model will be correlated with test data to provide a reliable tool to support the Space Station operation. A detailed description of the model is presented in this paper, together with sample calculations representing critical Space Station operating conditions. Sensitivity of computed results to variations in critical design parameters is also presented. Since the model will continue to evolve and be improved, logical process to be followed is also outlined.
Technical Paper

Development of an Intermediate-Scale Aerobic Bioreactor to Regenerate Nutrients from Inedible Crop Residues

1994-06-01
941501
Three Intermediate-Scale Aerobic Bioreactors were designed, fabricated, and operated. They utilized mixed microbial communities to bio-degrade plant residues. The continuously stirred tank reactors operated at a working volume of 8 L, and the average oxygen mass transfer coefficient, kLa, was 0.01 s-1. Mixing time was 35 s. An experiment using inedible wheat residues, a replenishment rate of 0.125 day-1, and a solids loading rate of 20 gdw day-1 yielded a 48% reduction in biomass. Bioreactor effluent was successfully used to regenerate a wheat hydroponic nutrient solution. Over 80% of available potassium, calcium, and other minerals were recovered and recycled in the 76-day wheat growth experiment.
Technical Paper

Effects of Flywheel Curvature on Aircraft Tire Footprint Behavior

1995-09-01
952020
Although aircraft tires are traditionally tested on external dynamometers, the effects of the curved test surface on normal contact pressure distribution and footprint area of a tire have not been previously addressed. Using the Tire Force Machine (TFM) at the Wright Laboratory Landing Gear Development Facility (LGDF), trends for pressure distribution and footprint area were investigated for concave, convex and flat plate surfaces. This evaluation was performed using the F-16 bias, F-16 radial and B-57 bias main landing gear tires at rated load and inflation pressures. The trends for overall tire footprint behavior indicate that the more convex the surface, the smaller the contact area and the larger the normal contact pressures. Conversely, the more concave the surface, the larger the contact area and the smaller the normal contact pressures. Based on these results, the study recommends a 168″ diameter concave (internal roadwheel) dynamometer for tire wear/durability tests.
Technical Paper

Enhanced Extra-Vehicular Activity Operations Through Custom Human Modeling Analysis

1997-07-01
972457
To sustain the extra-vehicular activity (EVA) rate required to assemble and maintain the International Space Station (ISS), we must enhance our ability to plan, train for, and execute EVAs. An underlying analysis capability must be in place to ensure EVA access to all external worksites either as a starting point for ground training, to generate information needed for on-orbit training, or to react quickly to develop contingency EVA plans, techniques, and procedures. This paper describes a potential flight experiment for application of custom human modeling analysis to plan and train for EVAs to enhance space station functionality and usability through assembly and operation.
Technical Paper

General Purpose Free Floating Platform for KC-135 Flight Experimentation

1994-06-01
941452
The Controlled Ecological Life Support Systems (CELSS) program is evaluating higher plants as a means of providing life support functions aboard space craft. These plant systems will be capable of regenerating air and water while meeting some of the food requirements of the crew. In order to grow plants in space, a series of systems are required to provide the necessary plant support functions. Some of the systems required for CELSS experiments are such that it is likely that existing technologies will require refinement, or novel technologies will need to be developed. To evaluate and test these technologies, a series of KC-135 precursor flights are being proposed. A general purpose free floating experiment platform is being developed to allow the KC-135 flights to be used to their fullest. This paper will outline the basic design for the CELSS Free Floating Test Bed (FFTB), and the requirements for the individual subsystems.
Technical Paper

Initial Identification of Aircraft Tire Wear

1995-05-01
951394
Tactical aircraft have tire lives as low as 3-5 landings per tire causing excessive support costs. The goal of the Improved Tire Life (ITL) program was to begin developing technology to double aircraft tire life, particularly for tactical aircraft. ITL examined not only the tire, but also aircraft/landing gear design, aircraft operations, and the operational environment. ITL had three main thrusts which were successfully accomplished: 1) development of an analytical tire wear model, 2) initiation of technology development to increase tire life, and 3) exploration of new and unique testing methods for tire wear. This paper reports the work performed and the results of the USAF sponsored ITL program.
Technical Paper

Integrated Aircraft Thermal Management and Power Generation

1993-07-01
932055
Future military aircraft will demand lower cost and lower weight subsystems that are more reliable, and easier to maintain and support. To identify and develop subsystems integration technologies that could provide benefits such as these to current and future military aircraft, the Air Force Wright Laboratory (WL/FIVE) initiated the Subsystem Integration Technology (SUIT) program in 1991. McDonnell Douglas Aerospace (MDA) together with Pratt and Whitney (PWA), and AlliedSignal Aerospace Systems and Equipment (ASE) was one of three teams that participated in Phase I of the SUIT program. The MDA Team's goal was to conceptually formulate a SUIT approach which would provide significantly reduced weight and costs while increasing cooling and power generation capabilities. These goals were achieved with a new and innovative energy subsystem suite which integrates aircraft and engine subsystem power, cooling, pumping, and controls.
Technical Paper

Integrated Failure Detection and Management for the Space Station Freedom External Active Thermal Control System

1993-07-01
932149
This paper presents the integrated approach toward failure detection, isolation, and recovery/reconfiguration to be used for the Space Station Freedom External Active Thermal Control System (EATCS). The on-board and on-ground diagnostic capabilities of the EATCS are discussed. Time and safety critical failures, as well as noncritical failures, and the detection coverage for each provided by existing capabilities are reviewed. The allocation of responsibility between onboard software and ground-based systems, to be shown during ground testing at the Johnson Space Center, is described. Failure isolation capabilities allocated to the ground include some functionality originally found on orbit but moved to the ground to reduce on-board resource requirements. Complex failures requiring the analysis of multiple external variables, such as environmental conditions, heat loads, or station attitude, are also allocated to ground personnel.
X