Refine Your Search

Search Results

Viewing 1 to 6 of 6
Journal Article

Active Thermal Management with a Dual Mode Coolant Pump

2013-04-08
2013-01-0849
A GT-suite commercial code was used to develop a fully integrated model of a light duty commercial vehicle with a V6 diesel engine, to study the use of a BorgWarner dual mode coolant pump (DMCP) in active thermal management of the vehicle. An Urban Dynamometer Driving Schedule (UDDS) was used to validate the simulation results with the experimental data. The conventional mechanical pump from the validated model was then replaced with the dual mode coolant pump. The control algorithm for the pump was based on controlling the coolant temperature with pump speed. Maximum electrical speed of the pump and the efficiency of the pump were used to determine whether the pump should run in mechanical or electrical mode. The model with the dual mode coolant pump was simulated for the UDDS cycle to demonstrate the effectiveness of control strategy.
Technical Paper

Advanced Thermal Management Strategies

2013-10-07
2013-36-0542
The paper presents the results of applying an advanced thermal management approach to a light duty commercial vehicle. The relative benefit of various thermal components, layouts and control strategies is discussed. Thermal performance along with associated fuel economy improvements are shown over various test cycles including the FTP, NEDC and US06. Results are given for a GT-Suite simulation as well as on vehicle.
Technical Paper

Advanced Thermal Management of a Light Duty Diesel Vehicle

2013-04-08
2013-01-0546
The paper presents a thermal management development capability and approach that was put in place to understand the relative benefit of various thermal components, layouts and control strategies. The use of the approach on a modern diesel powered vehicle is given. Thermal performance along with associated fuel economy improvements are shown over various test cycles including the FTP and US06. Results are given for a GT-Suite simulation as well as on vehicle.
Technical Paper

Coupled Thermal-Engine Simulation for a Light Duty Application

2010-04-12
2010-01-0806
The thermal management of vehicles has increased in importance due to the significant role of friction and auxiliary losses in engine operation on CO2 emissions. To evaluate different system and component concepts regarding their influence on fuel consumption, simulation offers a wide range of opportunities. In this paper a fully integrated model is presented utilizing the GT-Suite commercial code. It contains a diesel engine system model, a cooling circuit including a simplified model for the cooler package in the vehicle front end and a vehicle model. The purpose of this model is the investigation of cooling system components and control strategies with different engine inputs. A significant run time advantage is achieved by using a mean value engine model, which has a reduced number of input parameters. The simulation using the integrated model can be carried out within an acceptable time frame which enables vehicle drive cycle analysis.
Technical Paper

Development of an Electric Medium Duty Commercial Demonstration Vehicle

2024-04-09
2024-01-2159
To better understand the technical challenges of commercial vehicle electrification, BorgWarner converted a production Internal Combustion Engine (ICE) medium duty truck into a fully electrified vehicle. The resulting vehicle includes a newly developed dual-motor rear Beam eAxle driven by a pair of high-performance silicon carbide (SiC) inverters, an 800V battery system, and a new thermal management system customized for the electric vehicle. This paper will detail the conversion process along with the key components involved in the build. The resulting performance of the fully electrified commercial vehicle will be presented in comparison to the original production vehicle. The primary aim is to outline what is entailed in an electric vehicle conversion and to share the learnings gained throughout this build and development process.
Technical Paper

Vehicle Control Development - Converting a Medium-Duty Commercial Truck into a Battery Electric Vehicle

2024-04-09
2024-01-2047
The transition towards electrification in commercial vehicles has received more attention in recent years. This paper details the conversion of a production Medium-Duty class-5 commercial truck, originally equipped with a gasoline engine and 10-speed automatic transmission, into a battery electric vehicle (BEV). The conversion process involved the removal of the internal combustion engine, transmission, and differential unit, followed by the integration of an ePropulsion system, including a newly developed dual-motor beam axle that propels the rear wheels. Other systems added include an 800V/99 kWh battery pack, advanced silicon carbide (SiC) inverters, an upgraded thermal management system, and a DC fast charging system. A key part of the work was the development of the propulsion system controls, which prioritized drivability, NVH suppression, and energy optimization.
X