Refine Your Search

Topic

Author

Search Results

Technical Paper

A CAE Based Stochastic Assessment and Improvement of Vehicle NCAP Response

2004-03-08
2004-01-0458
One of the primary issues in the interpretation of vehicle impact response data, observed from vehicle crash test events, is coping with variability. This vehicle response inconsistency generally causes test results to be unpredictable and makes CAE test validation work difficult as well. This paper, considering the uncertain characteristics of vehicle impact events, has implemented a stochastic assessment of vehicle NCAP response variation through a CAE vehicle impact model, and it has accomplished the three primary study objectives as stated follows: 1) Identify the response variation causing factors stochastically from various structural and environmental factor candidates and quantify the degree of their influences on crash response, 2) Develop a methodology for interpreting the significance of the factor effects in conjunction with vehicle impact mechanics and physics, and 3) Implement a stochastic improvement of the vehicle NCAP responses and their repeatability
Technical Paper

A Method for Improving the Accuracy of Standard Stereo Photogrammetry When Using Small Subtended Angles

2005-04-11
2005-01-0751
In stereo photogrammetry, the accuracy of calculating the location of a point in space, decreases as the angle between the two cameras decreases. For vehicle crash testing, the need for accurate 3D data conflicts with the need for flexible positioning of the cameras, to enable unobstructed views of the targets inside the vehicle throughout the impact event. This paper discusses a method for increasing the quantity and quality of film analysis data when small subtended angles are used. The method uses the 3D information developed through triangulation of two cameras as input to a single camera analysis.
Technical Paper

A New Method for Obtaining FRF of a Structure in Area Where Impact Hammer Cannot Reach

2007-05-15
2007-01-2385
The Frequency Response Function (FRF) is a fundamental component to identifying the dynamic characteristics of a system. FRF's have a significant impact on modal analysis and root cause analysis of NVH issues. In most cases the FRF can be easily measured, but there are instances when the measurement is unobtainable due to spatial constraints. This paper outlines a simple experimental method for obtaining a high quality input-output FRF of a structure in areas where an impact hammer can not reach during impact testing. Traditionally, the FRF in such an area is obtained by using a load cell extender with a hammer impact excitation. A common problem with this device is a double hit, that yields unacceptable results.
Technical Paper

Active Safety of Commercial Vehicles - The European Status

2000-12-01
2000-01-3154
The increase of active safety will demand more and more electronic intelligence, if a drastic optimization of conventional systems is not possible any more. Starting from today's mechatronic systems, the trend leads via tomorrow's smart electronic systems to the future electronic networking of all intelligent vehicle systems. The paper describes the present status of these systems in Europe and the possibilities of increasing the active safety by using electronic intelligence.
Technical Paper

Air Bag Loading on In-Position Hybrid III Dummy Neck

2001-03-05
2001-01-0179
The Hybrid III family of dummies is used to estimate the response of an occupant during a crash. One recent area of interest is the response of the neck during air bag loading. The biomechanical response of the Hybrid III dummy's neck was based on inertial loading during crash events, when the dummy is restrained by a seat belt and/or seat back. Contact loading resulting from an air bag was not considered when the Hybrid III dummy was designed. This paper considers the effect of air bag loading on the 5th percentile female Hybrid III dummies. The response of the neck is presented in comparison to currently accepted biomechanical corridors. The Hybrid III dummy neck was designed with primary emphasis on appropriate flexion and extension responses using the corridors proposed by Mertz and Patrick. They formulated the mechanical performance requirements of the neck as the relationship between the moment at the occipital condyles and the rotation of the head relative to the torso.
Technical Paper

An Efficient Procedure for Vehicle Thermal Protection Development

2005-04-11
2005-01-1904
Vehicle thermal protection is an important aspect of the overall vehicle development process. It involves optimizing the exhaust system routing and designing heat shields to protect various components that are in near proximity to the exhaust system. Reduced time to market necessitates an efficient process for thermal protection development. A robust procedure that utilizes state of the art CFD simulation techniques proactively during the design phase is described. Simulation allows for early detection of thermal issues and development of countermeasures several months before prototype vehicles are built. Physical testing is only used to verify the thermal protection package rather than to develop heat shields. The new procedure reduces the number of physical tests and results in a robust, efficient methodology.
Technical Paper

Application of Multi-Parameter and Boundary Mannequin Techniques in Automotive Assembly Process

2003-06-17
2003-01-2198
This paper deals with the multi-parameter and boundary mannequin techniques in creating human models in automotive applications. The concepts and applications of single-parameter, multiple parameter and boundary mannequin method are discussed respectively to clarify certain confusion. Emphasis is put on how to create boundary mannequins for a specific application, which may have been puzzling many engineers in practical applications. The authors would like to share their experience in using the digital human modeling software and make discussions on some common issues. A number of case studies from typical automotive manufacturing assembly operations are also presented to demonstrate the usage of the multi-parameter and boundary mannequin techniques.
Technical Paper

Automotive Gateway Design Using Evolutionary Algorithms

2005-04-11
2005-01-1696
Because of the rapidly increasing amount of electronic components and busses in a vehicle, the use of gateways in Electronic Control Units (ECUs) becomes more important. The upcoming question is how to design an optimal gateway. This paper describes a method for designing an optimal automotive gateway in an FPGA by using Evolutionary Algorithms (EAs). The complete gateway functionality is diagrammed in a specification graph which consists of a function graph and an architecture graph. The function graph describes the complete functionality of the gateway. The architecture graph shows the variety of the different implementation options of the mapped function graph. Each gateway task in the function graph can be realized either in a parallel way (different kinds of hardware implementations) or in a sequential way (software on a microprocessor core).
Technical Paper

Body/Chassis Dynamic Response Under Experimental Modal Test

2005-05-16
2005-01-2463
Mode management is an essential part of the design process for NVH performance. System resonances must be sufficiently separated to minimize interaction from source inputs and each other [1]. Such resonances are typically determined through experimental modal testing conducted in a lab environment under controlled and repeatable conditions. Global vehicle and suspension system response demonstrate soft nonlinear behavior, however. Their resonant frequencies may thus decrease under on-road input not reproducible in a lab environment. Subsequently, mode management charts derived from lab testing may not be representative of the vehicle's on-road dynamic response. This paper presents modal model determination methodologies, and examines suspension system and vehicle global dynamic response under lab modal test and operating conditions. Vehicle suspension modes measured under static and dynamic (rolling) conditions will be compared.
Technical Paper

Comparison of Parametric and Non-Parametric Methods for Determining Injury Risk

2003-03-03
2003-01-1362
This paper contains a review of methods for deriving risk curves from biomechanical data obtained from impact experiments on human surrogates. It covers many of the problems and pitfalls of obtaining realistic human risk curves from impact experiments. The strength and weakness of both parametric and non-parametric methods are evaluated. The limitations of standard analysis of censored impact test data are presented. Methods are given for determining risk curves from both doubly censored data and data obtained from impacts to body regions in which there are more than one mechanism of injury. A detailed set of examples is presented in which different experimental data are analyzed using the Consistent Threshold method and the logistic approach. Finally risk curves for published data are presented for the femur, head, thorax, and neck.
Technical Paper

Considerations of Bio-fidelity Corridors for Lateral Impacts

2005-04-11
2005-01-0308
Developing an effective side impact ATD for assessing vehicle impact responses requires a method for evaluating that ATD's bio-fidelity. ISO/TR9790 has been in existence for some years to serve that purpose. Recently, NHTSA sponsored a research project on the post-mortem human subjects (PMHS) responses subjected to side impact conditions. Based on those newly available PMHS data, Maltese generated a new approach for creating bio-fidelity corridors for human surrogates. The approach incorporates the time factor into the evaluation equation and automates the process (Maltese et al. 2002). This paper serves as the first attempt to look closely at the new bio-fidelity corridor generation process (hereafter referred as the Maltese approach) with respect to its validity, effectiveness, as well as its practicality. The effect of mass scaling was first examined in order to ensure the integrity of the data. The time alignment scheme and the formation of the corridors were then tested.
Technical Paper

Effects Causing Untripped Rollover of Light Passenger Vehicles in Evasive Maneuvers

2004-03-08
2004-01-1057
Accident statistics show that rollover accidents contribute to a large proportion of fatal traffic accidents in the U.S.. In the past it has been documented that some light passenger cars showed tendencies to roll over in evasive lane change maneuvers. In 1997, a newly developed mini van rolled over in a severe double lane change test called “moose-test”. Recently (2001), a new SUV showed similar tendencies in the Consumers Union Short Course test. It is not immediately clear why these evasive test maneuvers are so strongly related to untripped rollover of light passenger vehicles. Therefore, the goal of current research is to understand the circumstances and effects causing modern passenger vehicles to roll over in evasive maneuvers on the road. This paper discusses research activities concerning the following questions: How do critical steering strategies lead to untripped rollover? Are resonant frequencies excited during maneuvers leading to rollover?
Technical Paper

Effects of Different Vehicle Parameters on Car to Car Frontal Crash Fatality Risk Estimated through a Parameterized Model

2006-04-03
2006-01-1134
For the purposes of analyzing and understanding the general effects of a set of different vehicle attributes on overall crash outcome a fleet model is used. It represents the impact response, in a one-dimensional sense, of two vehicle frontal crashes, across the frontal crash velocity spectrum. The parameters studied are vehicle mass, stiffness, intrusion, pulse shape and seatbelt usage. The vehicle impact response parameters are obtained from the NCAP tests. The fatality risk characterization, as a function of the seatbelt use and vehicle velocity, is obtained from the NASS database. The fatality risk is further mapped into average acceleration to allow for evaluation of the different vehicle impact response parameters. The results indicate that the effects of all the parameters are interconnected and none of them is independent. For example, the effect of vehicle mass on fatality risk depends on seatbelt use, vehicle stiffness, available crush, intrusion and pulse shape.
Technical Paper

Estimation of the Effects of Vehicle Size and Mass on Crash-Injury Outcome through Parameterized Probability Manifolds

2003-03-03
2003-01-0905
One way to improve vehicle's fuel economy is to reduce its weight. Reducing weight, however has other consequences. One of these is reduced vehicle size. Almost invariably, lighter vehicles are smaller. Reducing vehicle weight has also been associated with a reduction in occupant protection; the lighter the vehicle, the greater the chance of injury when a crash occurs. For this study, a data-based model is used to evaluate the independent effects of size and weight. This model is constructed using the NASS database and information obtained from NCAP tests. The results indicate that although mass is the dominant factor, size also has an effect; some of the observed reduction in safety benefits associated with mass reduction is actually an effect of size reduction. The model is also used to evaluate the effects of varying stiffness.
Technical Paper

Front Impact Pulse Severity Assessment Methodology

2005-04-11
2005-01-1416
The pulse severities from various vehicle impact tests need to be assessed during the impact structure development and targeting stage to assure that the occupants can meet the injury criteria as required. The conventional method using TTZV (time to zero velocity), TDC (total dynamic crush), and G1/G2 (two stage averaged pulse) is often unable to give a quick and clear answer to the question being raised. A simple numerical tool is developed here to assess the pulse severity with a single parameter in which the severity is expressed as the amount of chest travel under a certain target restraint curve or chest A-D curve. The tool is applied to several front impact vehicle pulses to show the effectiveness. The new method developed here can be used to assess the pulse severity in an easy and objective way along with conventional parameters.
Technical Paper

Functional Integration of E/E Systems

2000-11-01
2000-01-C052
The complexity of electrical/electronic vehicle systems mandates a systematic approach to the development of vehicle control, infotainment or comfort functions as well as the integration of these functions in an in-vehicle network consisting of several dedicated bus systems and according gateways. Due to reduced time-to-market, the integration has to be performed in a virtual environment. The classical Digital Mockup (DMU) addresses the physical integration of EE systems as mechanical components. However, functional aspects play a dominant role in EE vehicle systems. For this reason, functional integration defines a multi-view, mixed-level approach to the description, transformation, verification and integration of vehicle functions under consideration of the physical vehicle integration.
Technical Paper

Heavy Truck Frontal Crash Protection System Development

2007-10-30
2007-01-4289
Heavy trucks are produced with a great variety of vehicle configurations, operate over a wide range of gross vehicle weight and sometimes function in extreme duty environments. Frontal crashes of heavy trucks can pose a threat to truck occupants when the vehicle strikes another large object such as bridge works, large natural features or another heavy-duty vehicle. Investigations of heavy truck frontal crashes indicate that the factors listed above all affect the outcome for the driver and the resulting damage to the truck Recently, a new chassis was introduced for on-highway heavy truck models that feature frontal airbag occupant protection. This introduction presented an opportunity to incorporate the knowledge gained from crash investigation into the process for developing the crash sensor's parameter settings.
Technical Paper

Information Flow Analysis for Air Bag Sensor Development

2000-03-06
2000-01-1388
A statistical theory is used to quantify the amount of information transmitted from a transducer (i.e., accelerometer) to the air bag controller during a vehicle crash. The amount of information relevant to the assessment of the crash severity is evaluated. This quantification procedure helps determine the effectiveness of different testing conditions for the calibration of sensor algorithms. The amount of information in an acceleration signal is interpreted as a measure of the ability to separate signals based on parameters that are used to assess the severity of an impact. Applications to a linear spring-mass model and to actual crash signals from a development vehicle are presented. In particular, the comparison of rigid barrier (RB) and offset deformable barrier (ODB) testing modes is analyzed. Also, the performance of front-mounted and passenger compartment accelerometers are compared.
Technical Paper

Intelligent Braking Management for Commercial Vehicles

2000-12-01
2000-01-3156
The development of electronic intelligence and the continually increasing intensive knowledge of driving dynamics make it possible nowadays to conceive intelligent vehicle systems and to make such systems available for series production, which are capable of substantially enhancing the active safety of commercial vehicles. Through the implementation of advanced subsystems, which can be integrated as software packages into the basic electronic braking system, it will be possible to expand the possibilities of introducing assistance systems, which are capable of both, helping and relieving the driver from stress in critical situations. The driver will be relieved of all duties which could divert his attention or cause severe stress. As a consequence, the active safety of commercial vehicles will be considerably increased.
Technical Paper

LS-DYNA 3D Interface Component Analysis to Predict FMVSS 208 Occupant Responses

2003-03-03
2003-01-1294
Today's interior systems engineer has been challenged with providing cost-effective instrument panel design solutions to meet NHTSA's new FMVSS 208 front crash regulations. Automotive manufacturers are in continuous search of newer methods and techniques to reduce prototype tests and cost. Analytical methods of predicting occupant and structural behavior using computer-aided engineering (CAE) analysis has been in place for quite some time. With the new FMVSS 208 regulations requiring both 5th and 50th percentile occupant testing, CAE analysis of predicting occupant response has become increasingly important. The CAE analyst is challenged with representing the barrier test condition, which involves the structure and the occupant moving at velocities of 25, 30 and 35 mph. Representing the cab kinematics in high-speed impacts is crucial, since capturing the vehicle intrusion and pitching should be made part of the input variables.
X