Refine Your Search

Topic

Author

Search Results

Technical Paper

A Comparison of Heavy-Duty Diesel Truck Engine Smoke Opacities at High Altitude and at Sea Level

1991-08-01
911671
A study was conducted by the California Air Resources Board to investigate the effects that altitude has on in-use heavy-duty diesel truck smoke opacities. The understanding of these effects may allow for the establishment of a high altitude opacity standard for diesel trucks operating at or above altitudes of 5800 feet. During a three-week study, 170 heavy-duty diesel trucks were tested at an altitude of 5,820 feet using a test procedure consisting of rolling acceleration and snap idle tests. Eighty-four (84) of these trucks were recaptured and retested at an altitude of 125 feet. Results from a regression analysis indicates that, on average, truck smoke opacities increased by 23 opacity points when tested at altitudes near 6000 feet. Possible high altitude cutpoints and failure rates are also discussed.
Technical Paper

A Computerized Optimization Method Of Engine Mounting System

2003-05-05
2003-01-1461
This paper presents a method for optimization design of an engine mounting system subjected to some constraints. The engine center of gravity, the mount stiffness rates, the mount locations and/or their orientations with respect to the vehicle can be chosen as design variables, but some of them are given in advance or have limitations because of the packaging constraints on the mount locations, as well as the individual mount rate ratio limitations imposed by manufacturability. A computer program, called DynaMount, has been developed that identifies the optimum design variables for the engine mounting system, including decoupling mode, natural frequency placement, etc.. The degree of decoupling achieved is quantified by kinetic energy distributions calculated for each of the modes. Several application examples are presented to illustrate the validity of this method and the computer program.
Technical Paper

A Study of the Relative Benefits of On-Board Diagnostics and Inspection and Maintenance in California

1995-08-01
951944
California is considering adopting an enhanced Inspection and Maintenance (I&M) program (commonly referred to as Smog Check II) beginning with the 1996 calendar year. This program will utilize a targeting scheme to identify vehicles likely to be high emitters and send these vehicles to centralized testing facilities. The remaining fleet of vehicles will be sent to decentralized testing facilities. At these facilities, vehicles will be subjected to steady state loaded mode dynamometer based tests. Simultaneously, all 1996 and later model year passenger cars, light- and medium-duty trucks sold in California will be equipped with an On-Board Diagnostic (OBDII) system. This system is designed to monitor critical emission related components and activate a Malfunction Indicator Light (MIL) when a failure or a drift in calibration is likely to cause emissions to exceed 1.5 times the vehicle certification standards.
Technical Paper

A Study on Vehicle Elastomer Mount Preloading and Impact Response with Test Validation

2005-04-11
2005-01-1415
A variety of elastomer mounts are being used for vehicles as isolators/dampers between body and frame, on the engine cradle, etc. These vehicle flexible mounts, made of mainly rubber materials and housed in a metallic tube, are indispensable components affecting the quality of the vehicle ride, noise and vibration. In the auto industry, the usual practice when designing vehicle flexible mounts is to minimally reflect impact considerations in the mount design features. However, in most high-speed vehicle crash events where the mounts fail, the crash responses, including occupant injury severity, are known to be very different from the responses of non-failure cases. Even in low-speed vehicle impact cases, excessive deformation of the flexible mounts could cause significant variance in the compliance of the vehicle acceleration level to the air-bag firing and timing threshold requirements.
Journal Article

Achieving an 80% GHG Reduction by 2050 in California's Passenger Vehicle Fleet: Implications for the ZEV Regulation

2010-10-19
2010-01-2306
In recognizing the potential for large, damaging impacts from climate change, California enacted Executive Order S-03-05, requiring a reduction in statewide greenhouse gas (GHG) emissions to 80% below 1990 levels by 2050. Given that the transportation light-duty vehicle (LDV) segment accounts for 28% of the state's GHG emissions today, it will be difficult to meet the 2050 goal unless a portfolio of near-zero carbon transportation solutions is pursued. Because it takes decades for a new propulsion system to capture a large fraction of the passenger vehicle market due to vehicle fleet turn-over rates, it is important to accelerate the introduction of these alternatives to ensure markets enter into early commercial volumes (10,000s) between 2015 and 2020. This report summarizes the results and conclusions of a modeling exercise that simulated GHG emissions from the LDV sector to 2050 in California.
Technical Paper

Anti-Shudder Property of Automatic Transmission Fluids - A Study by the International Lubricants Standardization and Approval Committee (ILSAC) ATF Subcommittee

2000-06-19
2000-01-1870
In recent years, the slip lock-up mechanism has been adopted widely, because of its fuel efficiency and its ability to improve NVH. This necessitates that the automatic transmission fluid (ATF) used in automatic transmissions with slip lock-up clutches requires anti-shudder performance characteristics. The test methods used to evaluate the anti-shudder performance of an ATF can be classified roughly into two types. One is specified to measure whether a μ-V slope of the ATF is positive or negative, the other is the evaluation of the shudder occurrence in the practical vehicle. The former are μ-V property tests from MERCON® V, ATF+4®, and JASO M349-98, the latter is the vehicle test from DEXRON®-III. Additionally, in the evaluation of the μ-V property, there are two tests using the modified SAE No.2 friction machine and the modified low velocity friction apparatus (LVFA).
Technical Paper

California's Revised Heavy-Duty Vehicle Smoke and Tampering Inspection Program

1998-08-11
981951
Heavy-duty vehicles account for approximately 30 percent of the oxides of nitrogen (NOx) and 65 percent of the particulate matter (PM) emissions from the entire California on-road fleet, despite the fact that these vehicles comprise only 2 percent of the same. To meet legislative mandates to reduce excess smoke emissions from in-use heavy-duty diesel-powered vehicles, the Air Resources Board (ARB or Board) adopted, in December 1997, amendments to the regulations governing the operation and enforcement of the Heavy-Duty Vehicle Inspection Program (HDVIP or the “roadside” program) and the Periodic Smoke Inspection Program (PSIP or the “fleet” program). The initial roadside program was adopted in November 1990 in response to Senate Bill (SB) 1997 (stat. 1988, ch. 1544, Presley), and enforced from 1991 to 1993. It was suspended in October 1993, when the Board redirected staff to investigate reformulated fuels issues.
Technical Paper

Chrysler 45RFE a New Generation Light Truck Automatic Transmission

1999-03-01
1999-01-1260
The 45RFE is a new generation electronically controlled rear wheel drive automatic transmission. It employs real-time feedback, closed-loop modulation of shift functions to achieve outstanding shift quality and to meet demanding durability goals. It uses no shift valves; all friction element applications are effected with high-flow electro-hydraulic solenoid valves. A unique gear train arrangement of three planetary carriers allows all sun gears and annulus gears to have the same number of teeth respectively and use a common pinion gear in all carriers, resulting in significant manufacturing simplification. The three-planetary system is designed for four forward ratios of 3.00, 1.67, 1.00 and 0.75 and one reverse gear ratio equal to the low gear ratio. A fifth ratio of 1.50 is used only in certain kick-down shift sequences for highway passing. A sixth forward ratio, an additional overdrive ratio of 0.67, is available in the hardware.
Technical Paper

Design through Collaboration: A Supplier Partnership Paradigm

2000-03-06
2000-01-1389
New supplier / manufacturer relationship are necessary to produce products quickly, cost-effectively, and with features expected by the customer. However, the need for a new relationship is not universally accepted and endorsed. Resistance can be minimized through supplier self-assessment (such as Ford Motor Company's web-based instruments), management initiatives, and incentives. Trust and sharing are hallmarks. This strategy requires a new workplace paradigm affecting culture and people issues. Teams, extend across companies, share ideas and innovations. Decisions need to be mutually beneficial and the long-term value, for supplier and manufacturer, needs to be considered.
Technical Paper

Developing the AC17 Efficiency Test for Mobile Air Conditioners

2013-04-08
2013-01-0569
Chrysler, Ford, General Motors, the U.S. Environmental Protection Agency (EPA) and the California Air Resources Board (CARB) have collaborated over the past two years to develop an efficiency test for mobile air conditioner (MAC) systems. Because the effect of efficiency differences between different MAC systems and different technologies is relatively small compared to overall vehicle fuel consumption, quantifying these differences has been challenging. The objective of this program was to develop a single dynamic test procedure that is capable of discerning small efficiency differences, and is generally representative of mobile air conditioner usage in the United States. The test was designed to be conducted in existing test facilities, using existing equipment, and within a sufficiently short time to fit standard test facility scheduling. Representative ambient climate conditions for the U.S. were chosen, as well as other test parameters, and a solar load was included.
Technical Paper

Effects of Different Vehicle Parameters on Car to Car Frontal Crash Fatality Risk Estimated through a Parameterized Model

2006-04-03
2006-01-1134
For the purposes of analyzing and understanding the general effects of a set of different vehicle attributes on overall crash outcome a fleet model is used. It represents the impact response, in a one-dimensional sense, of two vehicle frontal crashes, across the frontal crash velocity spectrum. The parameters studied are vehicle mass, stiffness, intrusion, pulse shape and seatbelt usage. The vehicle impact response parameters are obtained from the NCAP tests. The fatality risk characterization, as a function of the seatbelt use and vehicle velocity, is obtained from the NASS database. The fatality risk is further mapped into average acceleration to allow for evaluation of the different vehicle impact response parameters. The results indicate that the effects of all the parameters are interconnected and none of them is independent. For example, the effect of vehicle mass on fatality risk depends on seatbelt use, vehicle stiffness, available crush, intrusion and pulse shape.
Technical Paper

Emissions of HFC-134a from Light-Duty Vehicles in California

2004-05-10
2004-01-2256
The current refrigerant in mobile air conditioning (AC) systems, HFC-134a (also known as R134a), is a potent greenhouse gas (GHG) with a global-warming potential (GWP) of 1300. Its emissions from 2009 and subsequent model-year (MY) light-duty vehicles may be regulated under the terms of a law (Sec. 43108.5, Health and Safety Code) adopted in California in 2002. To support regulation development, we have estimated direct emissions of HFC-134a from vehicular AC systems in California by a novel, three-prong method that uses: 1) data on the consumption of HFC-134a by California commercial fleets, 2) surveys of vehicle owners on AC system repair incidence, and 3) data on repair incidence among California commercial fleet vehicles. Although these sources do not report direct emission rates of HFC-134a, the data reflect actual leakage integrated over long periods from vehicles in all stages of useful life.
Technical Paper

Experimental & Computational Simulations Utilized During the Aerodynamic Development of the Dodge Intrepid R/T Race Car

2002-12-02
2002-01-3334
Experimental and computational simulation techniques were concurrently employed throughout the aerodynamic development of the NASCAR Dodge Intrepid R/T in order to achieve a greater understanding of the complex flow fields involved. With less than 500 days to design, understand, and build a competitive vehicle, the development team utilized a closed loop approach to testing. Scale wind tunnel models and Computational Fluid Dynamics (CFD) were used to identify program direction and to speed the development cycle versus the traditional process of full scale testing. This paper will detail the process and application of both the experimental and computational techniques used in the aerodynamic development of the Intrepid R/T race vehicle, primarily focusing on the earlier stages that led to its competition introduction at the start of the 2001 season.
Technical Paper

Experimental Determination of an Engine's Inertial Properties

2007-05-15
2007-01-2291
Determination of an engine's inertial properties is critical during vehicle dynamic analysis and the early stages of engine mounting system design. Traditionally, the inertia tensor can be determined by torsional pendulum method with a reasonable precision, while the center of gravity can be determined by placing it in a stable position on three scales with less accuracy. Other common experimental approaches include the use of frequency response functions. The difficulty of this method is to align the directions of the transducers mounted on various positions on the engine. In this paper, an experimental method to estimate an engine's inertia tensor and center of gravity is presented. The method utilizes the traditional torsional pendulum method, but with additional measurement data. With this method, the inertia tensor and center of gravity are estimated in a least squares sense.
Technical Paper

Heat Transfer Enhancement through Impingement of Flows and its Application in Lock-up Clutches

2005-04-11
2005-01-1936
An impinging-flow based methodology of enhancing the heat transfer in the grooves of a lockup clutch is proposed and studied. In order to evaluate its efficacy and reveal the mechanism, the three-dimensional flow within the groove was solved as a conjugate heat transfer problem in a rotating reference frame using the commercial CFD code FLUENT. The turbulence characteristics were predicted using k-ε model. The comparison of cooling effect was made between a simple baseline groove pattern and a typical flow-impingement based groove pattern of the same groove-to-total area ratio in terms of heat rejection ratio, maximum surface temperature, and heat transfer coefficient. It is found that more heat can be rejected with the impinging-flow based groove from the friction surface than with the baseline while the maximum surface temperature is lower in the former case.
Technical Paper

Interlaboratory Cross-Check of Heavy-Duty Vehicle Chassis Dynamometers

2002-10-21
2002-01-2879
Six laboratories capable of chassis-testing heavy-duty vehicles participated in a crosscheck program designed to compare emissions results from a Ford L-9000. The single-axle vehicle was shipped to each laboratory and tested through a series of UDDS and steady-state cycles. The resulting data were compared statistically using reproducibility and repeatability analyses. Although one lab produced some results that significantly differed from the other five, the remaining labs produced comparable results. TPM, CO and THC were the most variable while NOX and CO2 were most stable. Lab differences included atmospheric and environmental conditions, road-load curve application and drivers. Comparison of steady state and transient tests suggest that driver variability is not a major factor.
Technical Paper

Investigation of Ultrafine Particle Number Measurements from a Clean Diesel Truck Using the European PMP Protocol

2007-04-16
2007-01-1114
The sampling protocol proposed by the international PMP program for determination of particle emissions from clean light-duty vehicles was applied to the emissions from a California heavy-duty trap-equipped diesel truck. CARB is interested in developing opinions about the potential of this new European approach for emission determination and in exploring its utility for use in California. In this exercise, the use of various commercially available instruments for counting and sizing particles in the context of the PMP recommendations are explored. A single vehicle on a chassis dynamometer was exercised over steady-state and transient cycles. Multiple measurements of gaseous, mass, and particle emissions were collected in order to determine statistical significance. The PMP approach yielded particle emission measurements with higher precision and accuracy than the reference mass-based emission measurement.
Technical Paper

Laboratory Testing of a Continuous Emissions Monitor for Trace Level Sulfur Dioxide

2016-04-05
2016-01-0986
The measurement of SO2 levels in vehicle exhaust can provide important information in understanding the relative contribution of sulfur and sulfate from fuel vs. oil source to PM. For this study, a differential optical absorption spectrometer (DOAS) that can measure SO2 down to 20 ppbV in real-time was built and evaluated. The DOAS consisted of an extractive sampling train, a cylindrical sampling cell with a single-path design to minimize cell volume, a spectrometer, and a deuterium lamp light source with a UVC range of ∼200-230 nanometer (nm). Laboratory tests showed detection limits were approximately in the range of 12 to 15 ppbV and showed good linearity over SO2 concentration ranges of 20 to 953 ppbV. Interference tests showed some interference by NO and by NH3, at levels of 300 ppmV and 16.6 ppmV, respectively.
Technical Paper

Laminar Flow Whistle on a Vehicle Side Mirror

2007-04-16
2007-01-1549
In the development of several outside mirror designs for vehicles, a high frequency noise (whistling) phenomenon was experienced. First impression was that this might be due to another source on the vehicle (such as water management channels) or a cavity noise; however, upon further investigation the source was found to be the mirror housing. This “laminar whistle” is related to the separation of a laminar boundary layer near the trailing edges of the mirror housing. When there is a free stream impingement on the mirror housing, the boundary layer starts out as laminar, but as the boundary layer travels from the impingement point, distance, speed, and roughness combine to trigger the transition turbulent. However, when the transition is not complete, pressure fluctuations can cause rapidly changing flow patterns that sound like a whistle to the observer. Because the laminar boundary layer has very little energy, it does not allow the flow to stay attached on curved surfaces.
Technical Paper

Large Scale High Speed Dynamic Crush Tests Using Two Sleds

2005-04-11
2005-01-1418
It is often necessary to dynamically test a big vehicle part such as a rail tip at component level in high speed. Such a big part can be crush tested dynamically using two sled carriers. The methodology is shown and discussed here, and equations are developed to help determine required parameters such as sled velocity and weights. Test results using a truck rail tip are shown and compared to full vehicle test results for correlation.
X