Refine Your Search

Search Results

Viewing 1 to 8 of 8
Technical Paper

Advanced Life Support Sizing Analysis Tool (ALSSAT) Using Microsoft® Excel

2001-07-09
2001-01-2304
The development of an optimum regenerative Advanced Life Support (ALS) system for future Mars missions has been a crucial issue in the space industry. Considering the numerous potential technologies for subsystems with the complexity of the Air Revitalization System (ARS), Water Reclamation System (WRS), and Waste Management System of the Environmental Control and Life Support System (ECLSS), it will be time-consuming and costly to determine the best combination of these technologies without a powerful sizing analysis tool. Johnson Space Center (JSC), therefore, initiated the development of ALSSAT using Microsoft® Excel for this purpose. ALSSAT has been developed based upon the ALS Requirement and Design Definition Document (Ref. 18). In 1999, a paper describing the development of ALSSAT with its built-in ARS mass balance model (Ref. 21) was published in ICES.
Technical Paper

An Advanced Carbon Reactor Subsystem for Carbon Dioxide Reduction

1986-07-14
860995
Reduction of metabolic carbon dioxide is one of the essential steps in physiochemical air revitalization for long-duration manned space missions. Under contract with NASA Johnson Space Center, Hamilton Standard is developing an Advanced Carbon Reactor Subsystem (ACRS) to produce water and dense solid carbon from carbon dioxide and hydrogen. The ACRS essentially consists of a Sabatier Methanation Reactor (SMR) to reduce carbon dioxide with hydrogen to methane and water, a gas-liquid separator to remove product water from the methane, and a Carbon Formation Reactor (CFR) to pyrolyze methane to carbon and hydrogen. The hydrogen is recycled to the SMR, while the produce carbon is periodically removed from the CFR. The SMR is well-developed, while the CFR is under development. In this paper, the fundamentals of the SMR and CFR processes are presented and results of Breadboard CFR testing are reported.
Technical Paper

Chemical Analysis of Potable Water and Humidity Condensate: Phase One Final Results and Lessons Learned

1999-07-12
1999-01-2028
Twenty-nine recycled water, eight stored (ground-supplied) water, and twenty-eight humidity condensate samples were collected on board the Mir Space Station during the Phase One Program (1995-1998). These samples were analyzed to determine potability of the recycled and ground-supplied water, to support the development of water quality monitoring procedures and standards, and to assist in the development of water reclamation hardware. This paper describes and summarizes the results of these analyses and lists the lessons learned from this project. Results show that the recycled water and stored water on board Mir, in general, met NASA, Russian Space Agency (RSA), and U.S. Environmental Protection Agency (EPA) standards.
Technical Paper

Collection and Chemical Analysis of Reclaimed Water and Condensate from the Mir Space Station

1996-07-01
961569
Potable- and hygiene-quality water will be supplied to crews on the International Space Station through the recovery and purification of spacecraft wastewaters, including humidity condensate, urine, and wash water. Contaminants released into the cabin air from human metabolism, hardware offgassing, flight experiments, and routine operations will be present in spacecraft humidity condensate; normal constituents of urine and bathing water will be present in urine and untreated wash water. This report describes results from detailed analyses of Mir reclaimed potable water, ground-supplied water, and humidity condensate. These results are being used to develop and test water recycling and monitoring systems for the International Space Station (ISS); to evaluate the efficiency of the Mir water processors; and to determine the potability of the recycled water on board.
Technical Paper

Further Characterization and Multifiltration Treatment of Shuttle Humidity Condensate

1995-07-01
951685
On the International Space Station (ISS), humidity condensate will be collected from the atmosphere and treated by multifiltration to produce potable water for use by the crews. Ground-based development tests have demonstrated that multifiltration beds filled with a series of ion-exchange resins and activated carbons can remove many inorganic and organic contaminants effectively from wastewaters. As a precursor to the use of this technology on the ISS, a demonstration of multifiltration treatment under microgravity conditions was undertaken. On the Space Shuttle, humidity condensate from cabin air is recovered in the atmosphere revitalization system, then stored and periodically vented to space vacuum. A Shuttle Condensate Adsorption Device (SCAD) containing sorbent materials similar to those planned for use on the ISS was developed and flown on STS-68 as a continuation of DSO 317, which was flown initially on STS-45 and STS-47.
Technical Paper

Immobilized Microbe Microgravity Water Processing System (IMMWPS) Flight Experiment Integrated Ground Test Program

2002-07-15
2002-01-2355
This paper provides an overview of the IMMWPS Integrated Ground Test Program, completed at the NASA Johnson Space Center (JSC) during October and November 2001. The JSC Crew and Thermal Systems Division (CTSD) has developed the IMMWPS orbital flight experiment to test the feasibility of a microbe-based water purifier for use in zero-gravity conditions. The IMMWPS design utilizes a Microbial Processor Assembly (MPA) inoculated with facultative anaerobes to convert organic contaminants in wastewater to carbon dioxide and biomass. The primary purpose of the ground test program was to verify functional operations and procedures. A secondary objective was to provide initial ground data for later comparison to on-orbit performance. This paper provides a description of the overall test program, including the test article hardware and the test sequence performed to simulate the anticipated space flight test program. In addition, a summary of significant results from the testing is provided.
Technical Paper

Integrated Atmosphere Revitalization System Description and Test Results

1983-07-11
831110
Regenerative-type subsystems are being tested at JSC to provide atmosphere revitalization functions of oxygen supply and carbon dioxide (CO2) removal for a future Space Station. Oxygen is supplied by an electrolysis subsystem, developed by General Electric, Wilmington, Mass., which uses the product water from either the CO2 reduction subsystem or a water reclamation process. CO2 is removed and concentrated by an electrochemical process, developed by Life Systems, Inc., Cleveland, Ohio. The concentrated CO2 is reduced in a Sabatier process with the hydrogen from the electrolysis process to water and methane. This subsystem is developed by Hamilton Standard, Windsor Locks, Conn. These subsystems are being integrated into an atmosphere revitalization group. This paper describes the integrated test configuration and the initial checkout test. The feasibility and design compatibility of these subsystems integrated into an air revitalization system is discussed.
Technical Paper

On-Orbit Performance of the Major Constituent Analyzer

2002-07-15
2002-01-2404
The Major Constituent Analyzer (MCA) was activated on-orbit on 2/13/01 and provided essentially continuous readings of partial pressures for oxygen, nitrogen, carbon dioxide, methane, hydrogen and water in the ISS atmosphere. The MCA plays a crucial role in the operation of the Laboratory ECLSS and EVA operations from the airlock. This paper discusses the performance of the MCA as compared to specified accuracy requirements. The MCA has an on-board self-calibration capability and the frequency of this calibration could be relaxed with the level of instrument stability observed on-orbit. This paper also discusses anomalies the MCA experienced during the first year of on-orbit operation. Extensive Built In Test (BIT) and fault isolation capabilities proved to be invaluable in isolating the causes of anomalies. The process of fault isolation is discussed along with development of workaround solutions and implementation of permanent on-orbit corrections.
X