Refine Your Search

Search Results

Viewing 1 to 2 of 2
Journal Article

Achieving Ultra Low NOX Emissions Levels with a 2017 Heavy-Duty On-Highway TC Diesel Engine and an Advanced Technology Emissions System - NOX Management Strategies

2017-03-28
2017-01-0958
Recent 2010 emissions standards for heavy-duty engines have established a limit of oxides of nitrogen (NOX) emissions of 0.20 g/bhp-hr. However, CARB has projected that even when the entire on-road fleet of heavy-duty vehicles operating in California is compliant with 2010 emission standards, the National Ambient Air Quality Standards (NAAQS) requirement for ambient particulate matter and Ozone will not be achieved without further reduction in NOX emissions. The California Air Resources Board (ARB) funded a research program to explore the feasibility of achieving 0.02 g/bhp-hr NOX emissions. This paper details engine and aftertreatment NOX management requirements and model based control considerations for achieving Ultra-Low NOX (ULN) levels with a heavy-duty diesel engine. Data are presented for several Advanced Technology aftertreatment solutions and the integration of these solutions with the engine calibration.
Technical Paper

Engine Crankshaft Position Tracking Algorithms Applicable for Given Arbitrary Cam- and Crank-Shaft Position Signal Patterns

2007-04-16
2007-01-1597
This paper describes algorithms that can recognize and track the engine crankshaft position for arbitrary cam- and crank-shaft tooth wheel patterns in both steady-state and transient operating conditions. Crankshaft position tracking resolution is adjustable to accommodate different application requirements. The instantaneous crankshaft position information provided by the position tracking module form the basis for crankshaft angle domain (CAD) engine control and measurement functions such as precise injection / ignition controls and on-line cylinder pressure CAD analyses. The algorithms described make reconfiguration of the tracking module for different and arbitrary cam- and crank-shaft tooth wheel patterns very easy, which is valuable especially for prototyping engine control systems. The effectiveness of the algorithms is shown using test engines with different cam and crank signal patterns.
X