Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

A Comparison of Experimental and Modeled Velocity in Gasoline Direct-Injection Sprays with Plume Interaction and Collapse

2017-03-28
2017-01-0837
Modeling plume interaction and collapse for direct-injection gasoline sprays is important because of its impact on fuel-air mixing and engine performance. Nevertheless, the aerodynamic interaction between plumes and the complicated two-phase coupling of the evaporating spray has shown to be notoriously difficult to predict. With the availability of high-speed (100 kHz) Particle Image Velocimetry (PIV) experimental data, we compare velocity field predictions between plumes to observe the full temporal evolution leading up to plume merging and complete spray collapse. The target “Spray G” operating conditions of the Engine Combustion Network (ECN) is the focus of the work, including parametric variations in ambient gas temperature. We apply both LES and RANS spray models in different CFD platforms, outlining features of the spray that are most critical to model in order to predict the correct aerodynamics and fuel-air mixing.
Technical Paper

A Next-Generation Emission Test Procedure for Small Utility Engines - Part 1, Background and Approach

1990-09-01
901595
Measurement of emissions from small utility engines has usually been accomplished using steady-state raw emissions procedures such as SAE Recommended Practice J1088. While raw exhaust measurements have the advantage of producing modal exhaust gas concentration data for design feedback; they are laborious, may influence both engine performance and the emissions themselves, and have no provision for concurrent particulate measurements. It is time to consider a full-dilution procedure similar in principle to automotive and heavy-duty on-highway emission measurement practice, leading to improvements in many of the areas noted above, and generally to much higher confidence in data obtained. When certification and audit of small engine emissions become a reality, a brief dilute exhaust procedure generating only the necessary data will be a tremendous advantage to both manufacturers and regulatory agencies.
Technical Paper

A Novel Approach for Diesel NOX/PM Reduction

2010-04-12
2010-01-0308
The US EPA emission standards for 2010 on-highway and 2014 non-road diesel engines are extremely stringent, both in terms of oxides of nitrogen (NOX) and particulate matter (PM). Diesel engines typically operate lean and use at least 40-50 percent more air than what is needed for stoichiometric combustion of the fuel. As a result, significant excess oxygen (O₂) is present in diesel exhaust gas which prevents the application of the mature three-way catalyst (TWC) technology for NOX control used in gasoline engines. The objective of this work was to investigate whether or not the catalyzed DPF had a TWC-type of effect on NOX emissions and if so, why and to what extent when used on a diesel engine operating at reduced A/F ratio conditions.
Journal Article

A Progress Review on Soot Experiments and Modeling in the Engine Combustion Network (ECN)

2016-04-05
2016-01-0734
The 4th Workshop of the Engine Combustion Network (ECN) was held September 5-6, 2015 in Kyoto, Japan. This manuscript presents a summary of the progress in experiments and modeling among ECN contributors leading to a better understanding of soot formation under the ECN “Spray A” configuration and some parametric variants. Relevant published and unpublished work from prior ECN workshops is reviewed. Experiments measuring soot particle size and morphology, soot volume fraction (fv), and transient soot mass have been conducted at various international institutions providing target data for improvements to computational models. Multiple modeling contributions using both the Reynolds Averaged Navier-Stokes (RANS) Equations approach and the Large-Eddy Simulation (LES) approach have been submitted. Among these, various chemical mechanisms, soot models, and turbulence-chemistry interaction (TCI) methodologies have been considered.
Technical Paper

A Review of Diesel Particulate Filter Technologies

2003-06-23
2003-01-2303
Diesel particulate filters (DPF), known as traps in the mid-to late 1970s, were being developed for on-highway diesel applications. However, advanced engine design and in-cylinder engineering enabled diesel engines and vehicles to meet extremely low emission limits, including those of particulate matter (PM) without the need for DPF's or other auxiliary emission control devices. Late in 2000, the US EPA finalized its on-highway heavy-duty diesel emission standards, thus ending speculations regarding its stringency and establishing the lowest limits ever. The new nitric oxides (NOX) and PM limits are seen as technology-forcing. For NOX emissions, the debate rages on among the technical community about the merits of NOX adsorbers and urea selective catalytic reduction. On the other hand, there seems to be little doubt about DPF's as the technical solution for PM.
Technical Paper

Accurate Measurements of Heat Release, Oxidation Rates, and Soluble Organic Compounds of Diesel Particulates through Thermal Reactions

2010-04-12
2010-01-0814
In an effort of providing better understanding of regeneration mechanisms of diesel particulate matter (PM), this experimental investigation focused on evaluating the amount of heat release generated during the thermal reaction of diesel PM and the concentrations of soluble organic compounds (SOCs) dissolved in PM emissions. Differences in oxidation behaviors were observed for two different diesel PM samples: a SOC-containing PM sample and a dry soot sample with no SOCs. Both samples were collected from a cordierite particulate filter membrane in a thermal reactor connected to the exhaust pipe of a light-duty diesel engine. A differential scanning calorimeter (DSC) and a thermogravimetric analyzer (TGA) were used to measure the amount of heat release during oxidation, along with subsequent oxidation rates and the concentrations of SOCs dissolved in particulate samples, respectively.
Technical Paper

Achieving Heavy-Duty Diesel NOx/PM Levels Below the EPA 2002 Standards--An Integrated Solution

2000-03-06
2000-01-0187
The diesel engine has long been the most energy efficient powerplant for transportation. Moreover, diesels emit extremely low levels of hydrocarbon and carbon monoxide that do not require post-combustion treatment to comply with current and projected standards. It is admittedly, however, difficult for diesel engines to simultaneously meet projected nitrogen oxides and particulate matter standards. Traditionally, measures aimed at reducing one of these two exhaust species have led to increasing the other. This physical characteristic, which is known as NOx/PM tradeoff, remains the subject of an intense research effort. Despite this challenge, there is significant evidence that heavy-duty highway engine manufacturers can achieve substantial emission reductions. Many development programs carried out over the last five years have yielded remarkable results in laboratory demonstrations.
Technical Paper

Achieving Tier 2 Bin 5 Emission Levels with a Medium Duty Diesel Pick-Up and a NOX Adsorber, Diesel Particulate Filter Emissions System-Exhaust Gas Temperature Management

2004-03-08
2004-01-0584
Increasing fuel costs and the desire for reduced dependence on foreign oil has brought the diesel engine to the forefront of future medium-duty vehicle applications in the United States due to its higher thermal efficiency and superior durability. The main obstacle to the increased use of diesel engines in this platform is the upcoming extremely stringent, Tier 2 emission standard. In order to succeed, diesel vehicles must comply with emissions standards while maintaining their excellent fuel economy. The availability of technologies such as common rail fuel injection systems, low sulfur diesel fuel, NOX adsorber catalysts (NAC), and diesel particle filters (DPFs) allow the development of powertrain systems that have the potential to comply with these future requirements. In meeting the Tier 2 emissions standards, the heavy light-duty trucks (HLDTs) and medium-duty passenger vehicles (MDPVs) will face the greatest technological challenges. In support of this, the U.S.
Journal Article

Achieving Ultra Low NOX Emissions Levels with a 2017 Heavy-Duty On-Highway TC Diesel Engine - Comparison of Advanced Technology Approaches

2017-03-28
2017-01-0956
The 2010 emissions standards for heavy-duty engines have established a limit of oxides of nitrogen (NOX) emissions of 0.20 g/bhp-hr. However, the California Air Resource Board (ARB) projects that even when the entire on-road fleet of heavy-duty vehicles operating in California is compliant with 2010 emission standards, the National Ambient Air Quality Standards (NAAQS) requirement for ambient particulate matter (PM) and Ozone will not be achieved without further reduction in NOX emissions. The California Air Resources Board (CARB) funded a research program to explore the feasibility of achieving 0.02 g/bhp-hr NOX emissions.
Journal Article

Achieving Ultra Low NOX Emissions Levels with a 2017 Heavy-Duty On-Highway TC Diesel Engine and an Advanced Technology Emissions System - NOX Management Strategies

2017-03-28
2017-01-0958
Recent 2010 emissions standards for heavy-duty engines have established a limit of oxides of nitrogen (NOX) emissions of 0.20 g/bhp-hr. However, CARB has projected that even when the entire on-road fleet of heavy-duty vehicles operating in California is compliant with 2010 emission standards, the National Ambient Air Quality Standards (NAAQS) requirement for ambient particulate matter and Ozone will not be achieved without further reduction in NOX emissions. The California Air Resources Board (ARB) funded a research program to explore the feasibility of achieving 0.02 g/bhp-hr NOX emissions. This paper details engine and aftertreatment NOX management requirements and model based control considerations for achieving Ultra-Low NOX (ULN) levels with a heavy-duty diesel engine. Data are presented for several Advanced Technology aftertreatment solutions and the integration of these solutions with the engine calibration.
Journal Article

Achieving Ultra Low NOX Emissions Levels with a 2017 Heavy-Duty On-Highway TC Diesel Engine and an Advanced Technology Emissions System - Thermal Management Strategies

2017-03-28
2017-01-0954
The most recent 2010 emissions standards for heavy-duty engines have established a tailpipe limit of oxides of nitrogen (NOX) emissions of 0.20 g/bhp-hr. However, it is projected that even when the entire on-road fleet of heavy-duty vehicles operating in California is compliant with 2010 emission standards, the National Ambient Air Quality Standards (NAAQS) requirement for ambient particulate matter and Ozone will not be achieved without further reduction in NOX emissions. The California Air Resources Board (CARB) funded a research program to explore the feasibility of achieving 0.02 g/bhp-hr NOX emissions.
Technical Paper

Achieving the 2004 Heavy-Duty Diesel Emissions Using Electronic EGR and a Cerium Based Fuel Borne Catalyst

1997-02-24
970189
The post-1998 diesel engine emissions challenge was put forth in July 1995 by the Statement of Principles (SOP) signed by the manufacturers of heavy duty engines, the U.S. Environmental Protection Agency (EPA) and the California Air Resources Board (CARB). Through this SOP, the signatories agreed to reduce the on-highway diesel engine NOx emissions by 50% from the legislated 1998 4.0 g/bhp.hr to 2.0 g/bhp.hr by the year 2004 with no increase over the 1998 particulate matter legislated level set at 0.1 g/bhp.hr. There are provisions in the SOP for the optional grouping of the gaseous hydrocarbons and NOx, limiting them at a combined value of 2.5 g/bhp.hr with a 0.5 g/bhp.hr hydrocarbon limit. In North America, particulate matter emissions standards were first imposed on heavy duty diesel engines in 1988. Since then, the NOx and particulate matter were balanced by taking advantage of the trade-off between the two pollutants inherent in diesel engines.
Technical Paper

An Analytical Energy-budget Model for Diesel Droplet Impingement on an Inclined Solid Wall

2020-04-14
2020-01-1158
The study of spray-wall interaction is of great importance to understand the dynamics that occur during fuel impingement onto the chamber wall or piston surfaces in internal combustion engines. It is found that the maximum spreading length of an impinged droplet can provide a quantitative estimation of heat transfer and energy transformation for spray-wall interaction. Furthermore, it influences the air-fuel mixing and hydrocarbon and particle emissions at combusting conditions. In this paper, an analytical model of a single diesel droplet impinging on the wall with different inclined angles (α) is developed in terms of βm (dimensionless maximum spreading length, the ratio of maximum spreading length to initial droplet diameter) to understand the detailed impinging dynamic process.
Technical Paper

An Investigation of Particulate Morphology, Microstructures, and Fractal Geometry for ael Diesel Engine-Simulating Combustor

2004-10-25
2004-01-3044
The particulate matter (PM) produced from a diesel engine-simulating combustor was characterized in its morphology, microstructure, and fractal geometry by using a unique thermophoretic sampling and Transmission Electron Microscopy (TEM) system. These results revealed that diesel PM produced from the laboratory-scale burner showed similar morphological characteristics to the particulates produced from diesel engines. The flame air/fuel ratio and the particulate temperature history have significant influences on both particle size and fractal geometry. The primary particle sizes were measured to be 14.7 nm and 14.8 nm under stoichiometric and fuel-rich flame conditions, respectively. These primary particle sizes are smaller than those produced from diesel engines. The radii of gyration for the aggregate particles were 83.8 nm and 47.5 nm under these two flame conditions.
Technical Paper

Analysis of a Hybrid Powertrain for Heavy Duty Trucks

1995-11-01
952585
Heavy duty trucks account for about 50 percent of the NOx burden in urban areas and consume about 20 percent of the national transportation fuel in the United States. There is a continuing need to reduce emissions and fuel consumption. Much of the focus of current work is on engine development as a stand-alone subsystem. While this has yielded impressive gains so far, further improvement in emissions or engine efficiency is unlikely in a cost effective manner. Consequently, an integrated approach looking at the whole powertrain is required. A computer model of the heavy duty truck system was built and evaluated. The model includes both conventional and hybrid powertrains. It uses a series of interacting sub-models for the vehicle, transmission, engine, exhaust aftertreatment and braking energy recovery/storage devices. A specified driving cycle is used to calculate the power requirements at the wheels and energy flow and inefficiencies throughout the drivetrain.
Technical Paper

Application of On-Highway Emissions Technology on a Scraper Engine

1992-04-01
920923
An investigation was performed to determine the effects of applying on-highway heavy-duty diesel engine emissions reduction technology to an off-highway version of the engine. Special attention was paid to the typical constraints of fuel consumption, heat rejection, packaging and cost-effectiveness. The primary focus of the effort was NOx, reduction while hopefully not worsening other gaseous and particulate emissions. Hardware changes were limited to “bolt-on” items, thus excluding piston and combustion chamber modifications. In the final configuration, NOx was improved by 28 percent, particulates by 58 percent, CO and HC were also better and the fuel economy penalty was limited to under 4 percent. Observations are made about the effectiveness of various individual and combined strategies, and potential problems are identified.
Journal Article

Assessing the Importance of Radiative Heat Transfer for ECN Spray A Using the Transported PDF Method

2016-04-05
2016-01-0857
The importance of radiative heat transfer on the combustion and soot formation characteristics under nominal ECN Spray A conditions has been studied numerically. The liquid n-dodecane fuel is injected with 1500 bar fuel pressure into the constant volume chamber at different ambient conditions. Radiation from both gas-phase as well as soot particles has been included and assumed as gray. Three different solvers for the radiative transfer equation have been employed: the discrete ordinate method, the spherical-harmonics method and the optically thin assumption. The radiation models have been coupled with the transported probability density function method for turbulent reactive flows and soot, where unresolved turbulent fluctuations in temperature and composition are included and therefore capturing turbulence-chemistry-soot-radiation interactions. Results show that the gas-phase (mostly CO2 ad H2O species) has a higher contribution to the net radiation heat transfer compared to soot.
Technical Paper

Characterization of Oxidation Behaviors and Chemical-Kinetics Parameters of Diesel Particulates Relevant to DPF Regeneration

2010-10-25
2010-01-2166
At the current stage of engine technology, diesel engines typically require diesel particulate filter (DPF) systems to meet recent particulate emissions standards. To assure the performance and reliability of DPF systems, profound understanding of filtration and regeneration mechanisms is required. Among extensive efforts for developing advanced DPF systems, the development of effective thermal management strategies, which control the thermal runaway taking place in oxidation of an excess amount of soot deposit in DPF, is quite challenging. This difficulty stems mainly from lack of sufficient knowledge and understanding about DPF regeneration mechanisms, which need detailed information about oxidation of diesel particulate matter (PM). Therefore, this work carried out a series of oxidation experiments of diesel particulates collected from a DPF on a diesel engine, and evaluated the oxidation rates of the samples using a thermo-gravimetric analyzer (TGA).
Technical Paper

Characterization of Particle Size Distribution of a Heavy-Duty Diesel Engine During FTP Transient Cycle Using ELPI

2000-06-19
2000-01-2001
Particle number concentrations and size distributions were measured for the diluted exhaust of a 1991 diesel engine during the US FTP transient cycle for heavy-duty diesel engines. The engine was operated on US 2-D on-highway diesel fuel. The particle measurement system consisted of a full flow dilution tunnel as the primary dilution stage, an air ejector pump as the secondary dilution stage, and an electrical low pressure impactor (ELPI) for particle size distribution measurements. Particle number emission rate was the highest during the Los Angeles Non Freeway (LANF) and the Los Angeles Freeway (LAF) segments of the transient cycle. However, on brake specific number basis the LAF had the lowest emission level. The particle size distribution was monomodal in shape with a mode between 0.084 μm and 0.14 μm. The shape of the size distribution suggested no presence of nanoparticles below the lower detection limit of the instrument (0.032 μm), except during engine idle.
Technical Paper

Characterization of Particulate Morphology, Nanostructures, and Sizes in Low-Temperature Combustion with Biofuels

2012-04-16
2012-01-0441
Detailed characteristics of morphology, nanostructures, and sizes were analyzed for particulate matter (PM) emissions from low-temperature combustion (LTC) modes of a single-cylinder, light-duty diesel engine. The LTC engines have been widely studied in an effort to achieve high combustion efficiency and low exhaust emissions. Recent reports indicate that the number of nucleation mode particles increased in a broad engine operating range, which implies a negative impact on future PM emissions regulations in terms of the nanoparticle number. However, the size measurement of solid carbon particles by commercial instruments is indeed controversial due to the contribution of volatile organics to small nanoparticles. In this work, an LTC engine was operated with various biofuel blends, such as blends (B20) of soy bean oil (soy methyl ester, SME20) and palm oil (palm methyl ester, PME20), as well as an ultra-low-sulfur diesel fuel.
X