Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

1D Model of a Copper Exchanged Small Pore Zeolite Catalyst Based on Transient SCR Protocol

2013-04-08
2013-01-1578
Urea-selective catalytic reduction (SCR) catalysts are the leading aftertreatment technology for diesel engines, but there are major challenges associated with meeting future NOx emission standards, especially under transient drive cycle conditions that include large swings in exhaust temperatures. Here we present a simplified, transient, one-dimensional integral model of NOx reduction by NH₃ on a commercial small-pore Cu-zeolite urea-SCR catalyst for which detailed kinetic parameters have not been published. The model was developed and validated using data acquired from bench reactor experiments on a monolith core, following a transient SCR reactor protocol. The protocol incorporates NH₃ storage, NH₃ oxidation, NO oxidation and three global SCR reactions under isothermal conditions, at three space velocities and at three NH₃/NOx ratios.
Technical Paper

3-D Ultrasound for Medical Imaging in Space

1997-07-01
972286
Ultrasound is attractive for medical imaging in space because scanners can be small, lightweight, low power, and have minimal electromagnetic emissions. In addition, unlike conventional 2-D ultrasound. 3-D ultrasound allows an operator with no diagnostic skills to collect high-quality scans that can be interpreted by a remote expert. This allows 3-D ultrasound to be used effectively in remote locations. These capabilities are illustrated by the MUSTPAC-1, a portable 3-D ultrasound telemedicine system recently developed for the U.S. military. Design, implementation, and field experiences with the MUSTPAC-1 are discussed, and extensions for use in space are proposed.
Technical Paper

A 322,000 kilometer (200,000 mile) Over the Road Test with HySEE Biodiesel in a Heavy Duty Truck

2000-09-11
2000-01-2647
In July 1997, the Pacific Northwest and Alaska Regional Bioenergy Program, in cooperation with several industrial and institutional partners initiated a long-haul 322,000 km (200,000 mile) operational demonstration using a biodiesel and diesel fuel blend in a 324 kW (435 HP), Caterpillar 3406E Engine, and a Kenworth Class 8 heavy duty truck. This project was designed to: develop definitive biodiesel performance information, collect emissions data for both regulated and non-regulated compounds including mutagenic activity, and collect heavy-duty operational engine performance and durability information. To assess long-term engine durability and wear; including injector, valve and port deposit formations; the engine was dismantled for inspection and evaluation at the conclusion of the demonstration. The fuel used was a 50% blend of biodiesel produced from used cooking oil (hydrogenated soy ethyl ester) and 50% 2-D petroleum diesel.
Technical Paper

A Bench Test Procedure for Evaluating the Cylinder Liner Pitting Protection Performance of Engine Coolant Additives for Heavy Duty Diesel Engine Applications

1996-02-01
960879
Evaluations of the liner pitting protection performance provided by engine coolant corrosion inhibitors and supplemental coolant additives have presented many problems. Current practice involves the use of full scale engine tests to show that engine coolant inhibitors provide sufficient liner pitting protection. These are too time-consuming and expensive to use as the basis for industry-wide specifications. Ultrasonic vibratory test rigs have been used for screening purposes in individual labs, but these have suffered from poor reproducibility and insufficient additive differentiation. A new test procedure has been developed that reduces these problems. The new procedure compares candidate formulations against a good and bad reference fluid to reduce the concern for problems with calibration and equipment variability. Cast iron test coupons with well-defined microstructure and processing requirements significantly reduce test variability.
Technical Paper

A CFD Study of Losses in a Straight-Six Diesel Engine

1999-03-01
1999-01-0230
Using a previously validated and documented CFD methodology, this research simulated the flow field in the intake region (inlet duct, plenum, ports, valves, and cylinder) involving the four cylinders (#1, #3, #4, #6) of a straight-six IC engine. Each cylinder was studied with its intake valves set at high, medium and low valve lifts. All twelve viscous 3-D turbulent flow simulation models had high density, high quality computational grids and complete domains. Extremely fine grid density were applied for every simulation up to 1,000,000 finite volume cells. Results for all the cases presented here were declared “fully converged” and “grid independent”. The relative magnitude of total pressure losses in the entire intake region and loss mechanisms were documented here. It was found that the total pressure losses were caused by a number of flow mechanisms.
Technical Paper

A CFD Study of Squeeze Film

1994-04-01
941083
In a new generation of unit injector (HEUI-Hydraulically Actuated and Electronically Controlled), a thin gap of oil film exists between the armature and solenoid. At low temperatures, high pressure slows the poppet causing poor injector performance. A CFD(Computational Fluid Dynamics) study with moving boundaries/meshes was undertaken to evaluate squeeze film behavior and determine optimum venting arrangement for improved injector performance.
Technical Paper

A Comparison of Time-Averaged Piston Temperatures and Surface Heat Flux Between a Direct-Fuel Injected and Carbureted Two-Stroke Engine

1998-02-23
980763
Time-averaged temperatures at critical locations on the piston of a direct-fuel injected, two-stroke, 388 cm3, research engine were measured using an infrared telemetry device. The piston temperatures were compared to data [7] of a carbureted version of the two-stroke engine, that was operated at comparable conditions. All temperatures were obtained at wide open throttle, and varying engine speeds (2000-4500 rpm, at 500 rpm intervals). The temperatures were measured in a configuration that allowed for axial heat flux to be determined through the piston. The heat flux was compared to carbureted data [8] obtained using measured piston temperatures as boundary conditions for a computer model, and solving for the heat flux. The direct-fuel-injected piston temperatures and heat fluxes were significantly higher than the carbureted piston. On the exhaust side of the piston, the direct-fuel injected piston temperatures ranged from 33-73 °C higher than the conventional carbureted piston.
Journal Article

A Comprehensive Evaluation of Diesel Engine CFD Modeling Predictions Using a Semi-Empirical Soot Model over a Broad Range of Combustion Systems

2018-04-03
2018-01-0242
Single-cylinder engine experiments and computational fluid dynamics (CFD) modeling were used in this study to conduct a comprehensive evaluation of the accuracy of the modeling approach, with a focus on soot emissions. A semi-empirical soot model, the classic two-step Hiroyasu model with Nagle and Strickland-Constable oxidation, was used. A broad range of direct-injected (DI) combustion systems were investigated to assess the predictive accuracy of the soot model as a design tool for modern DI diesel engines. Experiments were conducted on a 2.5 liter single-cylinder engine. Combustion system combinations included three unique piston bowl shapes and seven variants of a common rail fuel injector. The pistons included a baseline “Mexican hat” piston, a reentrant piston, and a non-axisymmetric piston similar to the Volvo WAVE design. The injectors featured six or seven holes and systematically varied included angles from 120 to 150 degrees and hole sizes from 170 to 273 μm.
Technical Paper

A Computation Tool for Hydroforming Prediction Using an Inverse Approach1

2002-03-04
2002-01-0785
A computation tool for hydroforming prediction using an inverse approach (IA) has been developed. This approach is based on the method proposed by Guo et al. [1], however it has been extended to tube hydroforming problems in which the initial shape is not flat but is a round tube subject to internal pressure and axial feeds [2]. Although the inverse method tool is a stand-alone code, it has been linked to the Marc code for meshing purposes and visualization of results. In this paper, a finite element analysis of an extruded AA 6061-T4 tube submitted to free hydroforming conditions is carried out using the IA code. The results are in good agreement with those obtained by an incremental approach. However, the computational time in the inverse procedure is much less than that in the incremental method.
Technical Paper

A Dynamic Driving Course for Military Personnel -Curriculum and Assessment Results

2015-04-14
2015-01-0130
Driving skills and driving experience develop differently between a civilian and a military service member. Since 2000, the Department of Defense reports that two-thirds of non-related to war fatalities among active duty service members were due to transportation-related incidents. In addition, vehicle crashes are the leading non-related to war cause of both fatalities and serious injuries among active duty Marines. A pilot safe driving program for Marines was jointly developed by the Richard Petty Driving Experience and Clemson University Automotive Safety Research Institute. The pilot program includes four modules based on leading causes of vehicle crashes, and uses classroom and behind the wheel components to improve and reinforce safe driving skills and knowledge. The assessment results of this pilot program conducted with 192 Marines in September 2011 at Camp LeJeune, NC are presented and discussed.
Technical Paper

A Feasibility Evaluation of a Thermal Plasma Fuel Reformer for Supplemental Hydrogen Addition to Internal Combustion Engines

1999-04-26
1999-01-2239
One scenario for reducing engine out NOx in a spark ignition engine is to introduce small amounts of supplemental hydrogen to the combustion process. The supplemental hydrogen enables a gasoline engine to run lean where NOx emissions are significantly reduced and engine efficiency is increased relative to stoichiometric operation. This paper reports on a mass and energy balance model that has been developed to evaluate the overall system efficiencies of a thermal reformer-heat exchanger system capable of delivering hydrogen to the air intake of a gasoline engine. The mass and energy balance model is utilized to evaluate the conditions where energy losses associated with fuel reformation may be offset by increases in engine efficiencies.
Technical Paper

A Feasible CFD Methodology for Gasoline Intake Flow Optimization in a HEV Application - Part 1: Development and Validation

2010-10-25
2010-01-2239
Hybrid vehicle engines modified for high exhaust gas recirculation (EGR) are a good choice for high efficiency and low NOx emissions. Such operation can result in an HEV when a downsized engine is used at high load for a large fraction of its run time to recharge the battery or provide acceleration assist. However, high EGR will dilute the engine charge and may cause serious performance problems such as incomplete combustion, torque fluctuation, and engine misfire. An efficient way to overcome these drawbacks is to intensify tumble leading to increased turbulent intensity at the time of ignition. The enhancement of turbulent intensity will increase flame velocity and improve combustion quality, therefore increasing engine tolerance to higher EGR. It is accepted that the detailed experimental characterization of flow field near top dead center (TDC) in an engine environment is no longer practical and cost effective.
Technical Paper

A Feasible CFD Methodology for Gasoline Intake Flow Optimization in a HEV Application - Part 2: Prediction and Optimization

2010-10-25
2010-01-2238
Today's engine and combustion process development is closely related to the intake port layout. Combustion, performance and emissions are coupled to the intensity of turbulence, the quality of mixture formation and the distribution of residual gas, all of which depend on the in-cylinder charge motion, which is mainly determined by the intake port and cylinder head design. Additionally, an increasing level of volumetric efficiency is demanded for a high power output. Most optimization efforts on typical homogeneous charge spark ignition (HCSI) engines have been at low loads because that is all that is required for a vehicle to make it through the FTP cycle. However, due to pumping losses, this is where such engines are least efficient, so it would be good to find strategies to allow the engine to operate at higher loads.
Technical Paper

A Framework to Study Human Response to Whole Body Vibration

2007-06-12
2007-01-2474
A framework to study the response of seated operators to whole-body vibration (WBV) is presented in this work. The framework consists of (i) a six-degree-of-freedom man-rated motion platform to play back ride files of typical heavy off-road machines; (ii) an optical motion capture system to collect 3D motion data of the operators and the surrounding environment (seat and platform); (iii) a computer skeletal model to embody the tested subjects in terms of their body dimensions, joint centers, and inertia properties; (iv) a marker placement protocol for seated positions that facilitates the process of collecting data of the lower thoracic and the lumbar regions of the spine regardless of the existence of the seatback; and (v) a computer human model to solve the inverse kinematics/dynamic problem for the joint profiles and joint torques. The proposed framework uses experimental data to answer critical questions regarding human response to WBV.
Journal Article

A Fuzzy Inference System for Understeer/Oversteer Detection Towards Model-Free Stability Control

2016-04-05
2016-01-1630
In this paper, a soft computing approach to a model-free vehicle stability control (VSC) algorithm is presented. The objective is to create a fuzzy inference system (FIS) that is robust enough to operate in a multitude of vehicle conditions (load, tire wear, alignment), and road conditions while at the same time providing optimal vehicle stability by detecting and minimizing loss of traction. In this approach, an adaptive neuro-fuzzy inference system (ANFIS) is generated using previously collected data to train and optimize the performance of the fuzzy logic VSC algorithm. This paper outlines the FIS detection algorithm and its benefits over a model-based approach. The performance of the FIS-based VSC is evaluated via a co-simulation of MATLAB/Simulink and CarSim model of the vehicle under various road and load conditions. The results showed that the proposed algorithm is capable of accurately indicating unstable vehicle behavior for two different types of vehicles (SUV and Sedan).
Technical Paper

A Hybrid Electric Vehicle Thermal Management System - Nonlinear Controller Design

2015-04-14
2015-01-1710
The components in a hybrid electric vehicle (HEV) powertrain include the battery pack, an internal combustion engine, and the electric machines such as motors and possibly a generator. These components generate a considerable amount of heat during driving cycles. A robust thermal management system with advanced controller, designed for temperature tracking, is required for vehicle safety and energy efficiency. In this study, a hybridized mid-size truck for military application is investigated. The paper examines the integration of advanced control algorithms to the cooling system featuring an electric-mechanical compressor, coolant pump and radiator fans. Mathematical models are developed to numerically describe the thermal behavior of these powertrain elements. A series of controllers are designed to effectively manage the battery pack, electric motors, and the internal combustion engine temperatures.
Technical Paper

A Hybrid Heavy-Duty Diesel Power System for Off-Road Applications - Concept Definition

2021-04-06
2021-01-0449
A multi-year Power System R&D project was initiated with the objective of developing an off-road hybrid heavy-duty concept diesel engine with front end accessory drive-integrated energy storage. This off-road hybrid engine system is expected to deliver 15-20% reduction in fuel consumption over current Tier 4 Final-based diesel engines and consists of a downsized heavy-duty diesel engine containing advanced combustion technologies, capable of elevated peak cylinder pressures and thermal efficiencies, exhaust waste heat recovery via SuperTurbo™ turbocompounding, and hybrid energy recovery through both mechanical (high speed flywheel) and electrical systems. The first year of this project focused on the definition of the hybrid elements using extensive dynamic system simulation over transient work cycles, with hybrid supervisory controls development focusing on energy recovery and transient load assist, in Caterpillar’s DYNASTY™ software environment.
Technical Paper

A Method for Precise Placement of Hose Models

2013-04-08
2013-01-0603
A method is presented for precise mounting of a hose model with any specified twist. Once mounting points and directions are specified, a hose of a specified length can be developed using discrete beams. A divide and conquer approach is employed to position, orient, decouple the free end of the hose model in a twist free state that is then twisted to a specified angle. The development of the kinematic elements necessary to do this is presented. Some Cosserat models have been shown to branch into multiple solutions while the method presented here has always converged to the minimum energy solution. The method for linking the hose model to other linkages is discussed as well one common error committed by users in implementing the link. In order to model the torsional properties of the hose, the torsional stiffness must be modified. A method for doing this using digital scans is discussed.
Journal Article

A Model-Free Stability Control Design Scheme with Active Steering Actuator Sets

2016-04-05
2016-01-1655
This paper presents the application of a proposed fuzzy inference system as part of a stability control design scheme implemented with active steering actuator sets. The fuzzy inference system is used to detect the level of overseer/understeer at the high level and a speed-adaptive activation module determines whether an active front steering, active rear steering, or active 4 wheel steering is suited to improve vehicle handling stability. The resulting model-free system is capable of minimizing the amount of model calibration during the vehicle stability control development process as well as improving vehicle performance and stability over a wide range of vehicle and road conditions. A simulation study will be presented that evaluates the proposed scheme and compares the effectiveness of active front steer (AFS) and active rear steer (ARS) in enhancing the vehicle performance. Both time and frequency domain results are presented.
Technical Paper

A New Steering Wheel Returnability Control Strategy for On-Center Handling Performance

2011-10-06
2011-28-0079
In this paper, we suggest a new steering wheel returnability control strategy for EPS(Electric Power Steering) system to improve on-center handling performance. To improve steering wheel returnability for on-center handling performance, we developed a new control strategy based on estimation of alignment torque generated by tire and road surface. The returnability control algorithm only uses estimated values of the slip angle and the lateral acceleration that can be easily computed from sensor signals commonly available in passenger vehicles. The proposed algorithm was coded with Simulink, and it was cosimulated with the CarSim vehicle model. The performance of the proposed algorithm was compared with that of the conventional algorithm and it demonstrated improvement in both returnability and on-center handling performance.
X