Refine Your Search

Topic

Author

Search Results

Technical Paper

A Correction Method for Stationary Fan CFD MRF Models

2009-04-20
2009-01-0178
A common fan model to use in automotive under hood simulations is the Multiple Reference Frame (MRF) model and within the industry, for this specific application, this model is well known to under predict performance. In this paper we have examined the possibilities of correcting this deficiency with a simple “speed correction”. This is done by testing and simulating a production fan in the Volvo Fan Test Rig for two operating speeds, 1200 rpm and 2400 rpm. Pressure rise, fan power and static efficiency are presented as functions of volumetric flow rate. The simulations verify that using the MRF model the common behavior of under predicting pressure rise and performance of the fan occur. In addition, this work shows that; although the MRF is not predicting fan performance correctly it constitutes a reliable fan modeling strategy.
Technical Paper

A Study on Head Injury Risk in Car-to-Pedestrian Collisions Using FE-Model

2009-06-09
2009-01-2263
Head injury is quite frequently occurred in car-to-pedestrian collisions, which often places an enormous burden to victims and society. To address head protection and understand the head injury mechanisms, in-depth accident investigation and accident reconstructions were conducted. A total of 6 passenger-cars to adult-pedestrian accidents were sampled from the in-depth accident investigation in Changsha China. Accidents were firstly reconstructed by using Multi-bodies (MBS) pedestrian and car models. The head impact conditions such as head impact velocity; position and orientation were calculated from MBS reconstructions, which were then employed to set the initial conditions in the simulation of a head model striking a windshield using Finite Element (FE) head and windshield models. The intracranial pressure and stress distribution of the FE head model were calculated and correlated with the injury outcomes.
Technical Paper

A Test-Rig for Parametric Studies of the Car Seat

1993-03-01
930347
Previous studies have shown that car seat properties play an important role for the occupant protection during various types of accidents. An improved understanding of the interaction between the occupant and the seat is therefore desirable, since this could lead to enhanced protective capacities of future car seats. In this work a test-rig has been developed and constructed, by means of which it is possible to study the response from various seats during frontal collisions. With small modifications the test-rig can be utilized to study other collision directions as well. The rig has been used in a test series, which comprises four car seats in altogether 14 tests. In order to evaluate the interaction between the seat and the dummy, measurements have been made on: the seat frame; the floor connections; the seat belt; the submarine-beam; and on several locations in the dummy.
Technical Paper

Advanced Predictive Diesel Combustion Simulation Using Turbulence Model and Stochastic Reactor Model

2017-03-28
2017-01-0516
Today numerical models are a major part of the diesel engine development. They are applied during several stages of the development process to perform extensive parameter studies and to investigate flow and combustion phenomena in detail. The models are divided by complexity and computational costs since one has to decide what the best choice for the task is. 0D models are suitable for problems with large parameter spaces and multiple operating points, e.g. engine map simulation and parameter sweeps. Therefore, it is necessary to incorporate physical models to improve the predictive capability of these models. This work focuses on turbulence and mixing modeling within a 0D direct injection stochastic reactor model. The model is based on a probability density function approach and incorporates submodels for direct fuel injection, vaporization, heat transfer, turbulent mixing and detailed chemistry.
Technical Paper

Assessment of a Safe Bumper System Using a Pedestrian Lower Limb FE Model

2009-06-09
2009-01-2269
Lower limb injuries are common result of car to pedestrian impacts. A reversible bumper system was developed to reduce the risk of such injuries. In order to improve the protective performance of the bumper system, it was necessary to investigate the efficiency of the bumper system at different impact conditions and design configurations. In this study, the protective performance of the reversible bumper system was assessed by finite element (FE) modeling of lower limb impacts. The FE model of a production car front was developed and validated. The FE model of the reversible bumper system was then developed and replaced the original bumper in the car front model. A human lower limb FE model was used to evaluate the protective performance of the reversible bumper system. The effects of the bumper design parameters on protective performance were investigated by using the statistical method of factorial experiment design.
Technical Paper

Automated Flexible Tooling for Wing Box Assembly: Hexapod Development Study

2016-09-27
2016-01-2110
The ability to adapt to rapidly evolving market demands continues to be the one of the key challenges in the automation of assembly processes in the aerospace industry. To meet this challenge, industry and academia have made efforts to automate flexible fixturing. LOCOMACHS (Low Cost Manufacturing and Assembly of Composite and Hybrid Structures) - a European Union funded project with 31 partners - aims to address various aspects of aero-structure assembly with a special attention directed to the development of a new build philosophy along with relevant enabling technologies. This paper aims to present the results on the developed wing box build philosophy and the integration of automated flexible tooling solutions into the assembly process. The developed solution constitutes the use of synchronized hexapods for the assembly of front spar to upper cover whereas another hexapod was developed to install a rib by using of a force feedback sensor.
Technical Paper

Axial Fan Performance Predictions in CFD, Comparison of MRF and Sliding Mesh with Experiments

2011-04-12
2011-01-0652
Underhood Thermal Management has become an important topic for the majority of automotive OEM's. To keep combustion engines cool and manage waste heat efficiently is an important part in the design of vehicles with low fuel consumption. To be able to predict cooling performance and underhood airflow with good precision within a virtual design process, it is of utmost importance to model and simulate the cooling fan efficiently and accurately, and this has turned out to be challenging. Simulating the cooling fan in a vehicle installation involves capturing complex fluid dynamic interaction between rotating blades and stationary objects in the vicinity of the fan. This interaction is a function of fan rotation rate, fan blade profile, upstream and downstream installation components. The flow is usually highly turbulent and small geometry details, like the distance between the blade tip and the fan shroud, have strong impact on the fan performance characteristics.
Technical Paper

BioRID P3-Design and Performance Compared to Hybrid III and Volunteers in Rear Impacts of ΔV=7 km/h

1999-10-10
99SC16
Several investigators have noted limitations of the most commonly used dummy in rear impact testing, the Hybrid III. A dummy for rear impact testing, the BioRID I, has previously been presented. It was a step towards an effective tool for seat performance testing, but it was concluded that its neck extension and T1 upward motion were too small and that its user- friendliness could be improved. A new BioRID prototype has been developed. It has new neck muscle substitutes with damping and elastic elements that are independent of each other and fitted inside the torso. The new neck muscle substitutes extend to T3 and thus also load the upper thoracic spine. The new dummy has a softer thoracic spine and a torso made of softer rubber than was used for the original dummy. The BioRID prototype''s performance was compared to that of volunteers, the BioRID I and Hybrid III in rear impacts at ΔV=7 km/h.
Technical Paper

Computer Simulation of Shearing and Bending Response of the Knee Joint to a Lateral Impact

1995-11-01
952727
The shearing and bending injury mechanisms of the knee joint are recognised as two important injury mechanisms associated with car-pedestrian crash accidents. A study on shearing and bending response of the knee joint to a lateral impact loading was conducted with a 3D multibody system model of the lower extremity. The model consists of foot, leg and thigh with concentrated upper body mass. The body elements are connected by joints, including an anatomical knee joint unit that consists of the femur condyles, tibia condyles and tibia1 intercondylar eminence as well as ligaments. The biomechanical properties of the model were derived from literature data. The model was used to simulate two series of previously performed experiments with lower extremity specimens at lateral impact speeds of 15 and 20 km/h.
Technical Paper

Cooling Airflow System Modeling in CFD Using Assumption of Stationary Flow

2011-09-13
2011-01-2182
Today CFD is an important tool for engineers in the automotive industry who model and simulate fluid flow. For the complex field of Underhood Thermal Management, CFD has become a very important tool to engineer the cooling airflow process in the engine bay of vehicles. To model the cooling airflow process accurately in CFD, it is of utmost importance to model all components in the cooling airflow path accurately. These components are the heat exchangers, fan and engine bay blockage effect. This paper presents CFD simulations together with correlating measurements of a cooling airflow system placed in a test rig. The system contains a heavy duty truck louvered fin radiator core, fan shroud, fan ring and fan. Behind the cooling module and fan, a 1D engine silhouette is placed to mimic the blockage done by a truck engine. Furthermore, a simple hood is mounted over the module to mimic the guiding of air done by the hood shape in an engine bay.
Technical Paper

Correlation Between Euro NCAP Pedestrian Test Results and Injury Severity in Injury Crashes with Pedestrians and Bicyclists in Sweden

2014-11-10
2014-22-0009
Pedestrians and bicyclists account for a significant share of deaths and serious injuries in the road transport system. The protection of pedestrians in car-to-pedestrian crashes has therefore been addressed by friendlier car fronts and since 1997, the European New Car Assessment Program (Euro NCAP) has assessed the level of protection for most car models available in Europe. In the current study, Euro NCAP pedestrian scoring was compared with real-life injury outcomes in car-to-pedestrian and car-to-bicyclist crashes occurring in Sweden. Approximately 1200 injured pedestrians and 2000 injured bicyclists were included in the study. Groups of cars with low, medium and high pedestrian scores were compared with respect to pedestrian injury severity on the Maximum Abbreviated Injury Scale (MAIS)-level and risk of permanent medical impairment (RPMI). Significant injury reductions to both pedestrians and bicyclists were found between low and high performing cars.
Journal Article

Detailed Flow Studies in Close Proximity of Rotating Wheels on a Passenger Car

2009-04-20
2009-01-0778
Moving ground systems with rotating wheels have been used in wind tunnel tests during the last decades. Several studies on the effects of rotating wheels and the importance of wheel aerodynamics have been published. It is well known that both the local flow field and the global aerodynamic forces are affected by rotation of the wheels. Different studies indicate that the most significant effect from rotating the wheels is interference effects between the rear wheels and the underbody and vehicle base [1], [2]. A detailed flow field investigation around the wheels in close proximity to the vehicle has been performed on a passenger car in the Volvo Aerodynamic Wind Tunnel. Two omnidirectional 12-hole pressure probes were traversed in a number of planes close to the wheels. Effects of changing different parameters such as ground simulation and rim geometry were investigated. The local flow field has been scrutinised and related to the global aerodynamic properties of the vehicle.
Technical Paper

Development and Calibration of One Dimensional Engine Model for Hardware-In-The-Loop Applications

2018-04-03
2018-01-0874
The present paper aims at developing an innovative procedure to create a one-dimensional (1D) real-time capable simulation model for a heavy-duty diesel engine. The novelty of this approach is the use of the top-level engine configuration, test cell measurement data, and manufacturer maps as opposite to common practice of utilizing a detailed 1D engine model. The objective is to facilitate effective model adjustments and hence further increase the application of Hardware-in-the-Loop (HiL) simulations in powertrain development. This work describes the development of Fast Running Model (FRM) in GT-SUITE simulation software. The cylinder and gas-path modeling and calibration are described in detail. The results for engine performance and exhaust emissions produced satisfactory agreement with both steady-state and transient experimental data.
Technical Paper

Development of a Model Scale Heat Exchanger for Wind Tunnel Models of Road Vehicles

2008-04-14
2008-01-0097
During the development of the aerodynamic properties of fore coming road vehicles down scaled models are often used in the initial phase. However, if scale models are to be utilised even further in the aerodynamic development they have to include geometrical representatives of most of the components found in the real vehicle. As the cooling package is one of the biggest single generators of aerodynamic drag the heat exchangers are essential to include in a wind tunnel model. However, due mainly to limitations in manufacturing techniques it is complicated to make a down scaled heat exchanger and instead functional dummy heat exchangers have to be developed for scaled wind tunnel models. In this work a Computational Fluid Dynamics (CFD) code has been used to show that it is important that the simplified heat exchanger model has to be of comparable size to that of the full scale unit.
Technical Paper

Digital Human Models' Appearance Impact on Observers' Ergonomic Assessment

2005-06-14
2005-01-2722
The objective of this paper is to investigate whether different appearance modes of the digital human models (DHM or manikins) affect the observers when judging a working posture. A case where the manikin is manually assembling a battery in the boot with help of a lifting device is used in the experiment. 16 different pictures were created and presented for the subjects. All pictures have the same background, but include a unique posture and manikin appearance combination. Four postures and four manikin appearances were used. The subjects were asked to rank the pictures after ergonomic assessment based on posture of the manikin. Subjects taking part in the study were either manufacturing engineering managers, simulation engineers or ergonomists. Results show that the different appearance modes affect the ergonomic judgment. A more realistic looking manikin is rated higher than the very same posture visualized with a less natural appearance.
Technical Paper

Drivers’ Perceived Sensitivity to Crosswinds and to Low-Frequency Aerodynamic Lift Fluctuations

2023-04-11
2023-01-0659
The automotive industry continues to increase the utilization of computer-aided engineering. This put demands on finding reliable objective measures that correlate to subjective driver assessments on driving stability performance. However, the drivers’ subjective perception of driving stability can be difficult to quantify objectively, especially on test tracks where the wind conditions cannot be controlled. The advancement in driving simulator technology may enable evaluation of driving stability with high repeatability. The purpose of this study is to correlate the subjective assessment of driving stability to reliable objective measures and to evaluate the usefulness of a driving simulator for the subjective assessment. Two different driver clinic studies were performed in a state-of-the-art driving simulator. The first study included 38 drivers (professional, experienced and common drivers) and focused on crosswind gust sensitivity.
Technical Paper

Early Risk Identification and Cost-Benefit Analyses through Ergonomics Simulation

2009-06-09
2009-01-2287
For cost-beneficial reasons simulations with computer manikins have been increasingly used in the automotive industry for prediction of ergonomics problems before the product and work place exist in physical form. The main purpose of ergonomics simulations is to apply biomechanical models and data to assess the acceptability of the physical work load, e.g. working postures, visibility, clearance etc., which could result in requirements to change the design of the product. The aim is to improve ergonomics conditions in manual assembly and to promote a better product quality through improved assemblability (ease of assembly). Many studies have shown a clear correlation between assembly ergonomics and product quality and that poor assembly ergonomics result in impaired product quality and in decreased productivity. Nevertheless, there are remaining difficulties in achieving acceptance for changes of product and production solutions because of poor assembly ergonomics.
Technical Paper

Effect of Injection Parameters on Auto-Ignition and Soot Formation in Diesel Sprays

2001-09-24
2001-01-3687
A validation study of the numerical model of n-heptane spray combustion based on experimental constant-volume data [1] was done, by comparing auto-ignition delays for different pre - turbulence levels and initial temperatures, flame contours, and soot distributions under Diesel-like conditions. The basic novelty of the methodology developed in [2] - [3] is the implementation of the partially stirred reactor (PaSR) model accounting for detailed chemistry / turbulence interactions. It is based on the assumption that the chemical processes proceed in two successive steps: micro mixing, simulated on a sub - grid scale, is followed by the reaction act. When the all Re number RNG k-ε or LES models are employed, the micro mixing time can be consistently defined giving the combustion model a “well-closed” form incorporated into the KIVA-3V code.
Technical Paper

Effect of Rear-End Extensions on the Aerodynamic Forces of an SUV

2014-04-01
2014-01-0602
Under a global impulse for less man-made emissions, the automotive manufacturers search for innovative methods to reduce the fuel consumption and hence the CO2-emissions. Aerodynamics has great potential to aid the emission reduction since aerodynamic drag is an important parameter in the overall driving resistance force. As vehicles are considered bluff bodies, the main drag source is pressure drag, caused by the difference between front and rear pressure. Therefore increasing the base pressure is a key parameter to reduce the aerodynamic drag. From previous research on small-scale and full-scale vehicles, rear-end extensions are known to have a positive effect on the base pressure, enhancing pressure recovery and reducing the wake area. This paper investigates the effect of several parameters of these extensions on the forces, on the surface pressures of an SUV in the Volvo Cars Aerodynamic Wind Tunnel and compares them with numerical results.
Technical Paper

Experimental and Numerical Investigations of the Base Wake on an SUV

2013-04-08
2013-01-0464
With the increase in fuel prices and the increasingly strict environmental legislations regarding CO₂ emissions, reduction of the total energy consumption of our society becomes more important. Passenger vehicles are partly responsible for this consumption due to their strong presence in the daily life of most people. Therefore reducing the impact of cars on the environment can assist in decreasing the overall energy consumption. Even though several fields have an impact on a passenger car's performance, this paper will focus on the aerodynamic part and more specifically, the wake behind a vehicle. By definition a car is a bluff body on which the air resistance is for the most part driven by pressure drag. This is caused by the wake these bodies create. Therefore analyzing the wake characteristics behind a vehicle is crucial if one would like to reduce drag.
X