Refine Your Search

Topic

Author

Search Results

Technical Paper

A Catalytic NOX After-Treatment System for Heavy-Duty Trucks Using Diesel Fuel as Reducing Agent

1999-10-25
1999-01-3563
An advanced catalytic exhaust after-treatment system addresses the problem of NOX emissions from heavy-duty diesel trucks, relying on real-time catalyst modelling. The system consists of de-NOX catalysts, a device for injection of a reducing agent (diesel fuel) upstream the catalysts, and computer programmes to control the injection of the reducing agent and to model the engine and catalysts in real time. Experiments with 5 different air-assisted injectors were performed to determine the effect of injector design on the distribution of the injected diesel in the exhaust gas stream. A two-injector set-up was investigated to determine whether system efficiency could be increased without increasing the amount of catalyst or the amount of reducing agent necessary for the desired outcome. The results were verified by performing European standard transient cycle tests as well as stationary tests.
Technical Paper

A Four Stroke Camless Engine, Operated in Homogeneous Charge Compression Ignition Mode with Commercial Gasoline

2001-09-24
2001-01-3610
A single cylinder, naturally aspirated, four-stroke and camless (Otto) engine was operated in homogeneous charge compression ignition (HCCI) mode with commercial gasoline. The valve timing could be adjusted during engine operation, which made it possible to optimize the HCCI engine operation for different speed and load points in the part-load regime of a 5-cylinder 2.4 liter engine. Several tests were made with differing combinations of speed and load conditions, while varying the valve timing and the inlet manifold air pressure. Starting with conventional SI combustion, the negative valve overlap was increased until HCCI combustion was obtained. Then the influences of the equivalence ratio and the exhaust valve opening were investigated. With the engine operating on HCCI combustion, unthrottled and without preheating, the exhaust valve opening, the exhaust valve closing and the intake valve closing were optimized next.
Technical Paper

A Structure and Calibration Method for Data-Driven Modeling of NOX and Soot Emissions from a Diesel Engine

2012-04-16
2012-01-0355
The development and implementation of a new structure for data-driven models for NOX and soot emissions is described. The model structure is a linear regression model, where physically relevant input signals are used as regressors, and all the regression parameters are defined as grid-maps in the engine speed/injected fuel domain. The method of using grid-maps in the engine speed/injected fuel domain for all the regression parameters enables the models to be valid for changes in physical parameters that affect the emissions, without having to include these parameters as input signals to the models. This is possible for parameters that are dependent only on the engine speed and the amount of injected fuel. This means that models can handle changes for different parameters in the complete working range of the engine, without having to include all signals that actually effect the emissions into the models.
Technical Paper

Advanced Predictive Diesel Combustion Simulation Using Turbulence Model and Stochastic Reactor Model

2017-03-28
2017-01-0516
Today numerical models are a major part of the diesel engine development. They are applied during several stages of the development process to perform extensive parameter studies and to investigate flow and combustion phenomena in detail. The models are divided by complexity and computational costs since one has to decide what the best choice for the task is. 0D models are suitable for problems with large parameter spaces and multiple operating points, e.g. engine map simulation and parameter sweeps. Therefore, it is necessary to incorporate physical models to improve the predictive capability of these models. This work focuses on turbulence and mixing modeling within a 0D direct injection stochastic reactor model. The model is based on a probability density function approach and incorporates submodels for direct fuel injection, vaporization, heat transfer, turbulent mixing and detailed chemistry.
Technical Paper

Analysis of Advanced Multiple Injection Strategies in a Heavy-Duty Diesel Engine Using Optical Measurements and CFD-Simulations

2008-04-14
2008-01-1328
In order to meet future emissions legislation for Diesel engines and reduce their CO2 emissions it is necessary to improve diesel combustion by reducing the emissions it generates, while maintaining high efficiency and low fuel consumption. Advanced injection strategies offer possible ways to improve the trade-offs between NOx, PM and fuel consumption. In particular, use of high EGR levels (⥸ 40%) together with multiple injection strategies provides possibilities to reduce both engine-out NOx and soot emissions. Comparisons of optical engine measurements with CFD simulations enable detailed analysis of such combustion concepts. Thus, CFD simulations are important aids to understanding combustion phenomena, but the models used need to be able to model cases with advanced injection strategies.
Technical Paper

Application of Transient Temperature vs. Equivalence Ratio Emission Maps to Engine Simulations

2007-04-16
2007-01-1086
In order to acquire knowledge about temperature vs. equivalence ratio, T-ϕ, conditions in which emissions are formed and destroyed, T-ϕ parametric maps were constructed for: 1 Soot and soot precursors (C2H2) 2 Nitrogen oxides (NO and NO2) 3 Unburnt intermediates (CH2O, H2 and CO) 4 Important radicals (HO2 and OH) Each map was obtained by plotting data from a large number of simulations for various T-ϕ combinations in a zero-dimensional, 0D, closed Perfectly Stirred Reactor, PSR. Initially, the influences of elapsed reaction time, pressure and EGR level were examined, varying one parameter at a time. Then, since both the elapsed time and pressure change in an engine cycle, the maps were constructed according to engine pressure traces obtained from Computational Fluid Dynamics, CFD, simulations. Since the pressure is changing in elapsed time intervals the maps are called transient.
Technical Paper

CI Methanol and Ethanol combustion using ignition improver

2019-12-19
2019-01-2232
To act on global warming, CO2 emissions must be reduced. This will require a reduction in the use of fossil fuels for transportation. Because of the large quantities of fossil fuels used in transportation, sources of renewable fuels other than biomass will have to be explored, such as electrofuels synthesized from CO2 using renewable electricity. Potential electrofuels include methanol and ethanol, which have shown promising results in SI engines. However, their low cetane numbers make these fuels unsuitable for CI engines because of their poor auto-ignition qualities. The main objective of this study was to evaluate the viability of using methanol and ethanol in CI engines at compression ratios of 16.7 and 20 with a pilot-main injection strategy in the PPC/CI regime. Single cylinder engine tests on a heavy duty engine were performed under medium load conditions (1262 rpm and 172 Nm).
Technical Paper

Combustion Characteristics for Partially Premixed and Conventional Combustion of Butanol and Octanol Isomers in a Light Duty Diesel Engine

2017-10-08
2017-01-2322
Reducing emissions and improving efficiency are major goals of modern internal combustion engine research. The use of biomass-derived fuels in Diesel engines is an effective way of reducing well-to-wheels (WTW) greenhouse gas (GHG) emissions. Moreover, partially premixed combustion (PPC) makes it possible to achieve very efficient combustion with low emissions of soot and NOx. The objective of this study was to investigate the effect of using alcohol/Diesel blends or neat alcohols on emissions and thermal efficiency during PPC. Four alcohols were evaluated: n-butanol, isobutanol, n-octanol, and 2-ethylhexanol. The alcohols were blended with fossil Diesel fuel to produce mixtures with low cetane numbers (26-36) suitable for PPC. The blends were then tested in a single cylinder light duty (LD) engine. To optimize combustion, the exhaust gas recirculation (EGR) level, lambda, and injection strategy were tuned.
Technical Paper

Development of a Computationally Efficient Progress Variable Approach for a Direct Injection Stochastic Reactor Model

2017-03-28
2017-01-0512
A novel 0-D Probability Density Function (PDF) based approach for the modelling of Diesel combustion using tabulated chemistry is presented. The Direct Injection Stochastic Reactor Model (DI-SRM) by Pasternak et al. has been extended with a progress variable based framework allowing the use of a pre-calculated auto-ignition table. Auto-ignition is tabulated through adiabatic constant pressure reactor calculations. The tabulated chemistry based implementation has been assessed against the previously presented DI-SRM version by Pasternak et al. where chemical reactions are solved online. The chemical mechanism used in this work for both, online chemistry run and table generation, is an extended version of the scheme presented by Nawdial et al. The main fuel species are n-decane, α-methylnaphthalene and methyl-decanoate giving a size of 463 species and 7600 reactions.
Technical Paper

Drive Cycle Particulate and Gaseous Emissions from a Parallel Hybrid Combustion Engine and Electric Powertrain

2015-09-06
2015-24-2538
The emissions from a parallel hybrid combustion engine and electric powertrain operated on a modified New European Drive Cycle (NEDC) was investigated in order to determine the relation between emissions and the road and engine load profile. The effect of simulated electric motor assistance during accelerations on emissions was investigated as a means to reduce particulate and gaseous emissions. The time resolved particulate number and size distribution was measured in addition to gaseous emissions. The combustion engine was a downsized, three cylinder spark ignited direct injection (SIDI) turbocharged engine fuelled with gasoline. Electric motor assistance during accelerations was simulated by reduction of the vehicle mass. This reduced engine load during accelerations. Fuel rich engine transients occurred during accelerations. NOx emissions were reduced with electric assistance due to a reduction in engine load.
Technical Paper

Dual Fuel Methanol and Diesel Direct Injection HD Single Cylinder Engine Tests

2018-04-03
2018-01-0259
Laws concerning emissions from heavy duty (HD) internal combustion engines are becoming increasingly stringent. New engine technologies are needed to satisfy these new requirements and to reduce fossil fuel dependency. One way to achieve both objectives can be to partially replace fossil fuels with alternatives that are sustainable with respect to emissions of greenhouse gases, particulates and nitrogen oxides (NOx). A suitable candidate is methanol. The aim of the study presented here was to investigate the possible advantages of combusting methanol in a heavy duty Diesel engine. Those are, among others, lower particulate emissions and thereby bypassing the NOx-soot trade-off. Because of methanol’s poor auto-ignition properties, Diesel was used as an igniting sources and both fuels were separately direct injected. Therefore, two separate standard common rail Diesel injection systems were used together with a newly designed cylinder head and adapted injection nozzles.
Technical Paper

Effect of Injection Parameters on Auto-Ignition and Soot Formation in Diesel Sprays

2001-09-24
2001-01-3687
A validation study of the numerical model of n-heptane spray combustion based on experimental constant-volume data [1] was done, by comparing auto-ignition delays for different pre - turbulence levels and initial temperatures, flame contours, and soot distributions under Diesel-like conditions. The basic novelty of the methodology developed in [2] - [3] is the implementation of the partially stirred reactor (PaSR) model accounting for detailed chemistry / turbulence interactions. It is based on the assumption that the chemical processes proceed in two successive steps: micro mixing, simulated on a sub - grid scale, is followed by the reaction act. When the all Re number RNG k-ε or LES models are employed, the micro mixing time can be consistently defined giving the combustion model a “well-closed” form incorporated into the KIVA-3V code.
Technical Paper

Effect of Injection Strategy and EGR on Particle Emissions from a CI Engine Fueled with an Oxygenated Fuel Blend and HVO

2021-04-06
2021-01-0560
Alcohol-based fuels are a viable alternative to fossil fuels for powering vehicles. As a drop-in fuel, an oxygenated fuel blend containing the C8 alcohol 2-ethylhexanol (isomer of octanol), hydrotreated vegetable oil (HVO) and rapeseed methyl ester (RME) can reduce soot and NOx emissions whilst maintaining engine performance. However, fuel injection strategy significantly affects combustion and hence has been investigated with a view to reducing emissions whilst maintaining engine efficiency. In a single cylinder light-duty compression ignition research engine, the effect of different injection strategies (main, main/post, double pre/main, double pre/main/post injection) and EGR levels (0%, 19%) on specifically NOx, soot emissions and particle size distribution was investigated for three different fuels: fossil diesel fuel, HVO and the oxygenated blend. The blend was designed to have diesel-like combustion properties (cetane number of 52) and had an oxygen content of 5.4% by mass.
Journal Article

Effects of High Injection Pressure, EGR and Charge Air Pressure on Combustion and Emissions in an HD Single Cylinder Diesel Engine

2009-11-02
2009-01-2815
When increasing EGR from low levels to a level that corresponds to low temperature combustion, soot emissions initially increase due to lower soot oxidation before decreasing to almost zero due to very low soot formation. At the EGR level where soot emissions start to increase, the NOx emissions are low, but not sufficiently low to comply with future emission standards and at the EGR level where low temperature combustion occurs CO and HC emissions are too high. The purpose of this study was to investigate the possibilities for shifting the so-called soot bump (where soot levels are increased) to higher EGR levels, or to reduce the magnitude of the soot bump using very high injection pressures (up to 240 MPa) while reducing the NOx emissions using EGR. The possibility of reducing the CO and HC emissions at high EGR levels due to the increased mixing caused by higher injection pressure was also investigated and the flame was visualized using an endoscope at chosen EGR values.
Technical Paper

Effects of Variable Inlet Valve Timing and Swirl Ratio on Combustion and Emissions in a Heavy Duty Diesel Engine

2012-09-10
2012-01-1719
In order to avoid the high CO and HC emissions associated with low temperature when using high levels of EGR, partially premixed combustion is an interesting possibility. One way to achieve this combustion mode is to increase the ignition delay by adjusting the inlet valve closing timing, and thus the effective compression ratio. The purpose of this study was to investigate experimentally the possibilities of using late and early inlet valve closure to reduce NOx emissions without increasing emissions of soot or unburned hydrocarbons, or fuel consumption. The effect of increasing the swirl number (from 0.2 to 2.5) was also investigated. The combustion timing (CA50) was kept constant by adjusting the start of injection and the possibilities of optimizing combustion using EGR and high injection pressures were investigated. Furthermore, the airflow was kept constant for a given EGR level.
Technical Paper

Effects of Varying Engine Settings on Combustion Parameters, Emissions, Soot and Temperature Distributions in Low Temperature Combustion of Fischer-Tropsch and Swedish Diesel Fuels

2009-11-02
2009-01-2787
It has been previously shown that engine-out soot emissions can be reduced by using Fischer-Tropsch (FT) fuels, due to their lack of aromatics, compared to conventional Diesel fuels. In this investigation the engine-out emissions and fuel consumption parameters of an FT fuel derived from natural gas were compared to those of Swedish low sulfur diesel (MK1) when used in Low Temperature Combustion mode in a single cylinder heavy-duty diesel engine. The effects of varying Needle Opening Pressure (NOP), Charge Air Pressure (CAP) and Exhaust Gas Recirculation (EGR) according to an experimental design on the measured variables were also assessed. CAP and EGR were found to be the most significant factors for the combustion and emission parameters of both fuels. Increases in CAP resulted in lower soot emissions due to enhanced charge mixing, however NOx emissions rose as CAP increased.
Technical Paper

Experimental Investigation of the Effect of Needle Opening (NOP) Pressure on Combustion and Emissions Formation in a Heavy Duty DI Diesel Engine

2004-10-25
2004-01-2921
This paper presents an investigation of the effects of varying needle opening pressure (NOP) (375 to 1750 bar), engine speed (1000 rpm to 1800 rpm), and exhaust gas recirculation (EGR) (0% to 20 %) on the combustion process, exhaust emissions, and fuel consumption at low (25 %) and medium (50 %) loads in a single cylinder heavy duty DI diesel research engine with a displacement of 2.02 l. The engine was equipped with an advanced two-actuator E3 Electronic Unit Injector (EUI) from Delphi Diesel, with a maximum injection pressure of 2000 bar. In previous versions of the EUI system, the peak injection pressure was a function of the injection duration, cam lift, and cam rate. The advanced EUI system allows electronic control of the needle opening and closing. This facilitates the generation of high injection pressures, independently of load and speed.
Technical Paper

Experimental Investigation on the Hydrogen Peroxide Fumigation into the Inlet Duct of a Diesel Engine

2000-06-19
2000-01-1919
Believed to have a potential in reducing the NOx emission level, hydrogen peroxide was fumigated into the inlet duct of the AVL single cylinder research engine via a standard gasoline injector, normally used in the Volvo 850-car engine. A small metallic sphere installed 3 cm downstream the injector tip, improved the spray formation and the uniform distribution of the fumigated peroxide fluid upstream the intake valve. The hydrogen peroxide flow was varied according to the desired value via an electronic pulse frequency generator. The engine, equipped with an electronic unit injector, was initially run without any fumigation fluid until the specifications of the engine test point were reached and remained very stable. Further, the hydrogen peroxide injection was activated with three different injection flows, and the engine performance, including emission levels, was compared to reference performance.
Technical Paper

Experimental Study of the Combustion Process in a Heavy–Duty DI Diesel Engine for Different Injection Scenarios

2003-05-19
2003-01-1783
The effects of injection pressure and duration on exhaust gas emissions, sooting flame temperature, and soot distribution for a heavy–duty single cylinder DI diesel engine were investigated experimentally. The experimental analysis included use of two–color pyrometry as well as “conventional” measuring techniques. Optical access into the engine was obtained through an endoscope mounted in the cylinder head. The sooting flame temperature and soot distribution were evaluated from the flame images using the AVL VisioScope™ system. The results show that the NOx/soot trade–off curves could be improved by increasing injection pressure. An additional reduction could also be obtained if, for the same level of injection pressure, the injection duration was prolonged.
Technical Paper

Experimental and Numerical Investigation of Split Injections at Low Load in an HDDI Diesel Engine Equipped with a Piezo Injector

2006-10-16
2006-01-3433
In order to investigate the effects of split injection on emission formation and engine performance, experiments were carried out using a heavy duty single cylinder diesel engine. Split injections with varied dwell time and start of injection were investigated and compared with single injection cases. In order to isolate the effect of the selected parameters, other variables were kept constant. In this investigation no EGR was used. The engine was equipped with a common rail injection system with a piezo-electric injector. To interpret the observed phenomena, engine CFD simulations using the KIVA-3V code were also made. The results show that reductions in NOx emissions and brake specific fuel consumption were achieved for short dwell times whereas they both were increased when the dwell time was prolonged. No EGR was used so the soot levels were already very low in the cases of single injections.
X