Refine Your Search

Topic

Author

Search Results

Technical Paper

A Comparison of Burn Characteristics and Exhaust Emissions from Off-Highway Engines Fueled by E0 and E85

2004-01-16
2004-28-0045
Ethanol fuel has received renewed attention in recent years because of its oxygenate content and its potential to reduce greenhouse gas emissions from spark ignition engines. The economic impact on farm industry has been one of the drivers for its use in engines in the U.S. Although ethanol, in various blends, has been used in automotive engines for almost a decade the fuel has seldom been utilized in off-highway engines where the fuel systems are not well controlled. This investigation was conducted to evaluate exhaust emissions and combustion characteristics of E85 fuel in an off-highway engine used in farm equipment. A single-cylinder, four-stroke, spark ignition engine equipped with a carburetor was used to investigate combustion and exhaust emissions produced by gasoline and blends of gasoline and ethanol fuels. The engine fuel system was modified to handle flow rates required by the engine. A variable size-metering orifice was used to control air-to-fuel ratios.
Technical Paper

A New Floating-Liner Test Rig Design to Investigate Factors Influencing Piston-Liner Friction

2012-04-16
2012-01-1328
The largest contribution to engine rubbing friction is made by the piston and piston rings running in the cylinder liner. The magnitude and characteristics of the friction behaviour and the influence on these of factors such as surface roughness, piston design and lubricant properties are of keen interest. Investigating presents experimental challenges, including potential problems of uncontrolled build-to-build variability when component changes are made. These are addressed in the design of a new motored piston and floating liner rig. The design constrains transverse movement of a single liner using cantilevered mounts at the top and bottom. The mounts and two high stiffness strain gauged load cells constrain vertical movement. The outputs of the load cells are processed to extract the force contribution associated with friction. The liner, piston and crankshaft parts were taken from a EuroV-compliant, HPCR diesel engine with a swept capacity of 550cc per cylinder.
Technical Paper

An Electrohydraulic Gas Sampling Valve with Application to Hydrocarbon Emissions Studies

1980-02-01
800045
Design and development of an electrohydraulically actuated gas sampling valve is presented for use in auto engine combustion studies. The valve was developed with particular emphasis on sampling within the vicinity of the wall quench layer, requiring minimum leakage rates to avoid sample contamination and flush seating of the valve-stem to valve-seat to avoid perturbations of the wall layer. Response in the range of 0.4 to 1.0 milliseconds is attainable for variable valve lifts measured between 0.01 to 0.30 mm while using a net sealing force of approximately 750N. Gas leakage rates ranged from 0.05% to 1% of the sample mass flow rate when sampling from estimated distances from the wall of 0.3 mm to 0.03 mm, respectively, at a cylinder pressure of 10 bar. The gas sampling valve is presently coupled to a gas chromatograph to measure concentrations of major species components.
Technical Paper

Characterization of Exhaust Emissions in a SI Engine using E85 and Cooled EGR

2009-06-15
2009-01-1952
Gasoline-ethanol blends are being used or have been considered as a fuel for spark ignition engines. The motivation for using the blends varies in indifferent parts of the world and even in regions within a country. The increasing cost of gasoline, combined with regional tax incentives, is one of the reasons for increased interests in gasoline-ethanol blends in recent years in the U.S. Many vehicular engines are not designed to use a specific gasoline-ethanol blend. Rather, the engines have multi-blend capability, ranging from E0 to about E85. It is plausible that engine-out emissions will vary depending on the blend being used which may be further impacted by the level of EGR used with the blends. The present work was carried out to investigate engine out emissions when a vehicular spark-ignition engine was operated on E0 and E85 and different levels of EGR. A 4-cylinder, 2.5 liter, PFI engine was used in the experimental investigation.
Technical Paper

Climate control system improvements for better cabin environmental conditions and reduction of fuel consumption

2007-11-28
2007-01-2673
Since the beginning the world automotive industry looks for new technologies to improve the passengers' life inside vehicles, to optimize the consumption of fuel and to minimize the emission of pollutant. In the present study improvements in the vehicle acclimatization system for better cabin environmental conditions and reduction of fuel consumption were accomplished. The study included improvements in the air chamber and in the refrigeration cycle and was accomplished in a off-road vehicle model, with a bi-fuel engine of 1600 cm3, endowed with an acclimatization system with capacity of 1 TR (usual in this type of automobile). The tests of the acclimatization system performance were executed initially with the conventional system of air conditioning, without any modification (reference system). Along the development of the work modifications were introduced for the determination of the impact of these modifications in the system performance.
Technical Paper

Combustion Chamber Effects on Burn Rates in a High Swirl Spark Ignition Engine

1983-02-01
830335
Experimental measurements of burn rates have been carried out in a single cylinder homogeneous charge engine. Three different combustion chambers were investigated (75 % and 60 % squish bowl-in-piston chambers and a disk chamber) using a cylinder head with a swirl producing intake port and near central spark location. Data were obtained with each combustion chamber as a function of spark timing, EGR, and load at 1500 RPM. The combustion rate is strongly influenced by chamber shape. The 10-90 % burn durations of the 75 % and 60 % squish chambers are respectively about 40 % and 60 % that of the disk chamber. Chamber configuration had less effect on 0-10 % burn duration. The disk had about 25 % longer 0-10 % burn time than the bowl-in-piston chambers. Modifications to the GESIM model enabled good overall agreement between predictions and experimental data, a rather severe test of the model because the coupling of fluid mechanics, combustion and chamber geometry must be properly modeled.
Technical Paper

Comparative Assessment of Elastio-Viscoplastic Models for Thermal Stress Analysis of Automotive Powertrain Component

2015-04-14
2015-01-0533
In this paper, thermal stress analysis for powertrain component is carried out using two in-house developed elasto-viscoplastic models (i.e. Chaboche model and Sehitoglu model) that are implemented into ABAQUS via its user subroutine UMAT. The model parameters are obtained from isothermal cyclic tests performed on standard samples under various combinations of strain rates and temperatures. Models' validity is verified by comparing to independent non-isothermal tests conducted on similar samples. Both models are applied to the numerical analysis of exhaust manifold subject to temperature cycling as a result of vehicle operation. Due to complexity, only four thermal cycles of heating-up and cooling-down are simulated. Results using the two material models are compared in terms of accuracy and computational efficiency. It is found that the implemented Chaboche model is generally more computationally efficient than Sehitoglu model, though they are almost identical in regard to accuracy.
Journal Article

Damage Prediction for the Starter Motor of the Idling Start-Stop System Based on the Thermal Field

2017-06-28
2017-01-9181
A coupled magnetic-thermal model is established to study the reason for the damage of the starter motor, which belongs to the idling start-stop system of a city bus. A finite element model of the real starter motor is built, and the internal magnetic flux density nephogram and magnetic line distribution chart of the motor are attained by simulation. Then a model in module Transient Thermal of ANSYS is established to calculate the stator and rotor loss, the winding loss and the mechanical loss. Three kinds of losses are coupled to the thermal field as heat sources in two different conditions. The thermal field and the components’ temperature distribution in the starting process are obtained, which are finally compared with the already-burned motor of the city bus in reality to predict the damage. The analysis method proposed is verified to be accurate and reliable through comparing the actual structure with the simulation results.
Technical Paper

Development of an Experimental Facility to Characterize Performance, Surge, and Acoustics in Turbochargers

2011-05-17
2011-01-1644
A cold turbocharger test facility was designed and developed at The Ohio State University to measure the performance characteristics under steady state operating conditions, investigate unsteady surge, and acquire acoustic data. A specific turbocharger is used for a thermodynamic analysis to determine the capabilities and limitations of the facility, as well as for the design and construction of the screw compressor, flow control, oil, and compression systems. Two different compression system geometries were incorporated. One system allows compressor performance measurements left of the surge line, while the other incorporates a variable-volume plenum. At the full plenum volume and a specific impeller tip speed, the temporal variation of the compressor inlet and outlet and the plenum pressures as well as the turbocharger speed is presented for stable, mild surge, and deep surge operating points.
Technical Paper

Effect of Temperature Cycle on Thermomechanical Fatigue Life of a High Silicon Molybdenum Ductile Cast Iron

2015-04-14
2015-01-0557
High silicon molybdenum (HiSiMo) ductile cast iron (DCI) is commonly used for high temperature engine components, such as exhaust manifolds, which are also subjected to severe thermal cycles during vehicle operation. It is imperative to understand the thermomechanical fatigue (TMF) behavior of HiSiMo DCI to accurately predict the durability of high temperature engine components. In this paper, the effect of the minimum temperature of a TMF cycle on TMF life and failure behavior is investigated. Tensile and low cycle fatigue data are first presented for temperatures up to 800°C. Next, TMF data are presented for maximum temperatures of 800°C and minimum cycle temperatures ranging from 300 to 600°C. The data show that decreasing the minimum temperature has a detrimental effect on TMF life. The Smith-Watson-Topper parameter applied at the maximum temperature of the TMF cycle is found to correlate well with out-of-phase (OP) TMF life for all tested minimum temperatures.
Technical Paper

Evaluating the Effect of Two-Stage Turbocharger Configurations on the Perceived Vehicle Acceleration Using Numerical Simulation

2016-04-05
2016-01-1029
Charge boosting strategy plays an essential role in improving the power density of diesel engines while meeting stringent emissions regulations. In downsized two-stage turbocharged engines, turbocharger matching is critical to achieve desired boost pressure while maintaining sufficiently fast transient response. A numerical simulation model is developed to evaluate the effect of two-stage turbocharger configurations on the perceived vehicle acceleration. The simulation model developed in GT-SUITE consists of engine, drivetrain, and vehicle dynamics sub-models. A model-based turbocharger control logic is developed in MATLAB using an analytical compressor model and a mean-value engine model. The components of the two-stage turbocharging system evaluated in this study include a variable geometry turbine in the high-pressure stage, a compressor bypass valve in the low-pressure stage and an electrically assisted turbocharger in the low-pressure stage.
Technical Paper

Evaluation of the Effect of Fuel Composition and Gasoline Additives on Combustion Chamber Deposits

1996-10-01
962012
Since 1992 some vehicles have experienced engine knock or rapping noise during cold starts that is caused by combustion chamber deposit interference (CCDI) To better understand the CCDI phenomena, engine dynamometer studies were conducted. Results show that base gasoline composition and detergent additive compositions have significant effects on combustion chamber deposit (CCD) build-up In addition to engine testing, thermogravimetric analysis (TGA) was used to determine a correlation between unwashed gum and CCD levels
Technical Paper

Heat Rejection and Skin Temperatures of an Externally Cooled Exhaust Manifold

2015-04-14
2015-01-1736
The heat rejection rates and skin temperatures of a liquid cooled exhaust manifold on a 3.5 L Gasoline Turbocharged Direct Injection (GTDI) engine are determined experimentally using an external cooling circuit, which is capable of controlling the manifold coolant inlet temperature, outlet pressure, and flow rate. The manifold is equipped with a jacket that surrounds the collector region and is cooled with an aqueous solution of ethylene-glycol-based antifreeze to reduce skin temperatures. Results were obtained by sweeping the manifold coolant flow rate from 2.0 to 0.2 gpm at 12 different engine operating points of increasing brake power up to 220 hp. The nominal coolant inlet temperature and outlet pressure were 85 °C and 13 psig, respectively. Data were collected under steady conditions and time averaged. For the majority of operating conditions, the manifold heat rejection rate is shown to be relatively insensitive to changes in manifold coolant flow rate.
Technical Paper

Hydrogen-Diesel Engine: Problems and Prospects of Improving the Working Process

2019-04-02
2019-01-0541
The diesel engine with direct injection of hydrogen gas has clear advantages over the hydrogen engine with forced ignition of a hydrogen-air mixture. Despite of this, the concept of hydrogen-diesel engine has not investigated until now. In the paper, a detailed study of the working process of hydrogen-diesel engine carried out for the first time. Based on the results of the experimental studies and mathematical modeling, it has established that the behavior of thermo-physical processes in the combustion chamber of hydrogen-diesel engine, in a number of cases, differs fundamentally from the processes that take place in the conventional diesel engines. There have been identified the reasons for their difference and determined the values of the operating cycle parameters of hydrogen diesel engine, which provide the optimal correlation between the indicator values and the environmental performance.
Technical Paper

Impact of Ignition Energy Phasing and Spark Gap on Combustion in a Homogenous Direct Injection Gasoline SI Engine Near the EGR Limit

2013-04-08
2013-01-1630
For spark-ignition gasoline engines operating under the wide speed and load conditions required for light duty vehicles, ignition quality limits the ability to minimize fuel consumption and NOx emissions via dilution under light and part load conditions. In addition, during transients including tip-outs, high levels of dilution can occur for multiple combustion events before either the external exhaust gas can be adjusted and cleared from the intake or cam phasing can be adjusted for correct internal dilution. Further improvement and a thorough understanding of the impact of the ignition system on combustion near the dilution limit will enable reduced fuel consumption and robust transient operation. To determine and isolate the effects of multiple parameters, a variable output ignition system (VOIS) was developed and tested on a 3.5L turbocharged V6 homogeneous charge direct-injection gasoline engine with two spark plug gaps and three ignition settings.
Journal Article

Investigating the Potential to Reduce Crankshaft Main Bearing Friction During Engine Warm-up by Raising Oil Feed Temperature

2012-04-16
2012-01-1216
Reducing friction in crankshaft bearings during cold engine operation by heating the oil supply to the main gallery has been investigated through experimental investigations and computational modelling. The experimental work was undertaken on a 2.4l DI diesel engine set up with an external heat source to supply hot oil to the gallery. The aim was to raise the film temperature in the main bearings early in the warm up, producing a reduction in oil viscosity and through this, a reduction in friction losses. The effectiveness of this approach depends on the management of heat losses from the oil. Heat transfer along the oil pathway to the bearings, and within the bearings to the journals and shells, reduces the benefit of the upstream heating.
Technical Paper

Investigation of Nozzle Clearance Effects on a Radial Turbine: Aerodynamic Performance and Forced Response

2013-04-08
2013-01-0918
Variable nozzle turbine (VNT) technology has become a popular technology for diesel engine application. To pivot the nozzle vane and adjust the turbine operating condition, nozzle clearances are inevitable on both the hub and shroud side of turbine housing. Leakage flow formed inside the nozzle clearance leads to extra flow loss and makes the nozzle exit flow less uniform, thus further affects downstream aerodynamic performance of the rotor. As the leakage mixing with nozzle wake flow, the process is highly unsteady, which increases the fluctuation amplitude of transient load on the rotating turbine wheels. In present paper, firstly steady CFD analysis of a turbocharger turbine was performed at different nozzle openings. Then unsteady simulation of the turbine was carried out to investigate the interaction between the leakage flow through nozzle clearance and the main flow. Nozzle clearance's effect on turbine performance was investigated.
Technical Paper

Investigation of Thermoforming as a Method of Manufacturing Plastic Air Intake Manifolds

2000-03-06
2000-01-0045
Current plastic intake manifolds are manufactured using the injection molding process. In this paper, thermoforming is explored as an alternative to injection molding for making intake manifold shells, which can then be joined by one of the welding techniques used for thermoplastic materials. The investigation reported here includes press-forming experiments of a simple bowl shaped shell and subsequent welding experiments to join these shells.
Technical Paper

Measurements of the Evaporation Behavior of the Film of Fuel Blends

2018-04-03
2018-01-0290
The formation of fuel film in the combustion cylinder affects the mixing process of the air and the fuel, and the process of the combustion propagation in engines. Some models of film evaporation have been developed to predict the evaporation behavior of the film, but rarely experimental results have been produced, especially when the temperature is high. In this study, the evaporation behavior of the film of different species of oil and their blends at different temperature are observed. The 45 μL films of isooctane, 1-propanol, 1-butanol, 1-pentanol, and their blends were placed on a quartz glass substrate in the closed temperature-controlled chamber. The shape change of the film during evaporation was monitored by a high-speed camera through the window of the chamber. First, the binary blends film of isooctane and one of the other three oils were evaporated at 30 °C, 50 °C, 70 °C and 90 °C.
X