Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

A Biomechanical Analysis of Head, Neck, and Torso Injuries to Child Surrogates Due to Sudden Torso Acceleration

1984-10-01
841656
This paper reports on the injuries to the head, neck and thorax of fifteen child surrogates, subjected to varying levels of sudden acceleration. Measured response data in the child surrogate tests and in matched tests with a three-year-old child test dummy are compared to the observed child surrogates injury levels to develop preliminary tolerance data for the child surrogate. The data are compared with already published data in the literature.
Technical Paper

A Comparison of Total and Speciated Hydrocarbon Emissions from an Engine Run on Two Different California Phase 2 Reformulated Gasolines

1994-10-01
941972
New regulations from the state of California have established, for the first time, reactivity-based exhaust emissions standards for new vehicles and require that any clean alternative fuels needed by these vehicles be made available. Contained in these regulations are provisions for “reactivity adjustment factors” which will provide credit for vehicles which run on reformulated gasoline. The question arises: given two fuels of different chemical composition, but both meeting the criteria for CA Phase 2 gasoline (reformulated gasoline), how different might the specific reactivity of the exhaust hydrocarbons be? In this study we explored this question by examining the engine-out HC emissions from a single-cylinder version of the 5.4 L modular truck engine run on two different CA Phase 2 fuels.
Technical Paper

A Crash Simulation of Instrument Panel Knee Bolster Using Hybrid III Dummy Lower Torso

1995-02-01
951067
This paper reports the analytical procedure developed for a simulation of knee impact during a barrier crash using a hybrid III dummy lower torso. A finite element model of the instrument panel was generated. The dummy was seated in mid-seat position and was imparted an initial velocity so that the knee velocity at impact corresponded to the secondary impact velocity during a barrier crash. The procedure provided a reasonably accurate simulation of the dummy kinematics. This simulation can be used for understanding the knee bolster energy management system. The methodology developed has been used to simulate impact on knee for an occupant belted or unbelted in a frontal crash. The influence of the vehicle interior on both the dummy kinematics and the impact locations was incorporated into the model. No assumptions have been made for the knee impact locations, eliminating the need to assume knee velocity vectors.
Journal Article

A Fatigue Life Prediction Method of Laser Assisted Self-Piercing Rivet Joint for Magnesium Alloys

2015-04-14
2015-01-0537
Due to magnesium alloy's poor weldability, other joining techniques such as laser assisted self-piercing rivet (LSPR) are used for joining magnesium alloys. This research investigates the fatigue performance of LSPR for magnesium alloys including AZ31 and AM60. Tensile-shear and coach peel specimens for AZ31 and AM60 were fabricated and tested for understanding joint fatigue performance. A structural stress - life (S-N) method was used to develop the fatigue parameters from load-life test results. In order to validate this approach, test results from multijoint specimens were compared with the predicted fatigue results of these specimens using the structural stress method. The fatigue results predicted using the structural stress method correlate well with the test results.
Technical Paper

A Microcomputer-Based On-Vehicle Data Acquisition System

1981-06-01
810811
A microcomputer-based, multichannel data acquisition system has been developed to acquire high frequency transient information typified by, but not limited to, automotive vehicle crash test applications. The system, which has been designed to be mounted on the test vehicle during a vehicle crash, will accommodate up to 240 channels. Each channel is comprised of a stand-alone microcomputer, memory for data storage, signal conditioning for piezoresistive transducers, automatic calibration and zero offsets, and programmable gain amplifier. The microcomputer is based upon a Motorola 6801/68701 microcomputer. The paper describes the design, development, and data processing characteristics of the prototype system.
Technical Paper

A Review and Evaluation of Various HIC Algorithms

1988-02-01
880656
Various algorithms such as a direct computation approach, maximization requirement criteria method established by Chou and Nyquist, and a partitioning technique, for computing HIC are reviewed in this paper. An evaluation has been conducted considering both the accuracy and efficiency of these algorithms using theoretical pulses and experimental resultant head accelerations of a dummy obtained from the literature, Hyge sled and frontal barrier impact tests. Using results obtained from direct computations as “exact” values for comparison, all the algorithms evaluated provide HIC estimates in close agreement with the “exact” values. The CPU times, which are used as a measure for the assessment of computational efficiency, vary from algorithm to algorithm. Methods using a partitioning logic developed by Mentzer and a faster algorithm developed by Holstein and Alem are found to be very efficient, and are recommended for use in the computation of HIC.
Technical Paper

A Study on Ride-Down Efficiency and Occupant Responses in High Speed Crash Tests

1995-02-01
950656
In vehicle crash tests, an unbelted occupant's kinetic energy is absorbed by the restraints such as an air bag and/or knee bolster and by the vehicle structure during occupant ride-down with the deforming structure. Both the restraint energy absorbed by the restraints and the ride-down energy absorbed by the structure through restraint coupling were studied in time and displacement domains using crash test data and a simple vehicle-occupant model. Using the vehicle and occupant accelerometers and/or load cell data from the 31 mph barrier crash tests, the restraint and ride-down energy components were computed for the lower extremity, such as the femur, for the light truck and passenger car respectively.
Technical Paper

A Technique to Predict Thermal Buckling in Automotive Body Panels by Coupling Heat Transfer and Structural Analysis

2014-04-01
2014-01-0943
This paper describes a comprehensive methodology for the simulation of vehicle body panel buckling in an electrophoretic coat (electro-coat or e-coat) and/or paint oven environment. The simulation couples computational heat transfer analysis and structural analysis. Heat transfer analysis is used to predict temperature distribution throughout a vehicle body in curing ovens. The vehicle body temperature profile from the heat transfer analysis is applied as an input for a structural analysis to predict buckling. This study is focused on the radiant section of the curing ovens. The radiant section of the oven has the largest temperature gradients within the body structure. This methodology couples a fully transient thermal analysis to simulate the structure through the electro-coat and paint curing environments with a structural, buckling analysis.
Technical Paper

Adaptive Fuzzy Neural Networks With Global Clustering

2004-03-08
2004-01-0294
This paper proposes a novel algorithm. This algorithm is called Self-Organizing Fuzzy Neural Network (SOFNN). SOFNN revolutionizes how researchers apply control theories, image/signal processing on control systems and other applications. In general, SOFNN is an identification technique that automatically initiates, builds and fine-tunes the required network parameters. SOFNN evaluates required structures without predefined parameters or expressions regarding systems. SOFNN sets out to learn and configure a system's characteristics. Self-constructing and self-tuning features enable SOFNN to handle complex, non-linear, and time-varying systems with higher accuracy, making systems identification easier. SOFNN constructs and fine-tunes the system parameter through two phases. The two phases are the construction and the parameter-tuning phase. The two phases run concurrently allowing SOFNN to identify systems on-line.
Technical Paper

Additional Notes on Finite Element Models of Deformable Featureless Headform

1997-02-24
970164
Model characteristics of a finite element deformable featureless headform with one to four layers of solid elements for the headform skin are studied using both the LS-DYNA3D and FCRASH codes. The models use a viscoelastic material law whose constitutive parameters are established through comparisons of drop test simulations at various impact velocities with the test data. Results indicate that the one-layer model has a significant distinct characteristic from the other (2-to-4-layer) models, thus requiring different parametric values. Similar observation is also noticed in simulating drop tests with one and two layers of solid elements for the headform skin using PAM-CRASH. When using the same parametric values for the viscoelastic material, both the LS-DYNA3D and FCRASH simulations yield the same results under identical impact conditions and, thereby, exhibit a “functional equivalency” between these two codes.
Technical Paper

An Advanced Instrument for the Real Time Measurement of Engine Oil Economy

1992-02-01
920655
A number of advancements have been made in the coulometric sulfur trace instrumental technique for the real-time measurement of engine oil economy. These advancements include modification of the coulometric cell to improve reliability and reproducibility. The instrument has been interfaced with a microcomputer for instrument control as well as data acquisition, storage, and analysis. Studies were undertaken which demonstrate sufficient sensitivity and linearity for determination of engine oil economy at levels better than 10,000 miles/quart. Applications to steady-state engine oil consumption mapping and to instantaneous oil consumption during transient engine cycling are described. These instruments are being produced by an outside supplier for use in various company locations in both the engine production and engine research environments.
Technical Paper

An Assessment of Vehicle Side-Window Defrosting and Demisting Process

2001-03-05
2001-01-0289
The thermal comfort of passengers within a vehicle is often the main objective for the climate control engineer; however, the need to maintain adequate visibility through the front and side windows of a vehicle is a critical aspect of safe driving. This paper compares the performance of the side window defrosting and demisting mechanism of several current model vehicles. The study highlights the drawbacks of current designs and points the way to improved passive defrosting mechanisms. The investigation is experimental and computational. The experiments are carried out using full-scale current vehicle models. The computational study, which is validated by the experiments, is used to perform parametric investigation into the side window defrosters performance. The results show that the current designs of the side-defroster nozzles give maximum airflow rates in the vicinity of the lower part of the window, which yields unsatisfactory visibility.
Technical Paper

An Evaluation of Various Viscous Criterion Computational Algorithms

1993-03-01
930100
The viscous criterion (V*C) has been proposed by biomechanics researchers as a generic biomechanical index for potential soft tissue injury. It is defined by the product of the velocity of deformation and the instantaneous compression of torso and abdomen. This criterion requires calculation and differentiation of measured torso/abdomen compression data. Various computational algorithms for calculating viscous criterion are reviewed and evaluated in this paper. These include methods developed by Wayne State University (WSU), NHTSA (DOT) and Ford. An evaluation has been conducted considering the accuracy of these algorithms with both theoretical and experimental data from dummy rib compressions obtained during a crash test. Based on these results, it is found that: V*C results depend on the scheme used in the computation process, the sampling rate and filtering of original raw data. The NHTSA method yields the lowest V*C value.
Technical Paper

An Evaluation of the SAE Recommended Design Changes to the Hybrid III Dummy Hip Joint

1995-02-01
950665
The SAE Large Male and Small Female Dummy Task Group has recommended a change to the Hybrid III dummy hip joint. This change was made because of a non-biofidelic interference in the current design that can influence chest accelerations. The modifications include a new femur casting shaft design and the addition of an elastomeric stop to the top of the casting. Static testing and Hyge sled tests were done to evaluate the modifications. Based on the results, the new design satisfied the requirements set by the SAE task group and reduced the influence of hip joint characteristics on chest accelerations.
Technical Paper

Analytical and Experimental Techniques in Solving the Plastic Intake Manifold NVH

2001-04-30
2001-01-1544
The intent of this paper is to summarize the work of the V8 power plant intake manifold radiated noise study. In a particular V8 engine application, customer satisfaction feedback provided observations of existing unpleasant noise at the driver's ear. A comprehensive analysis of customer data indicated that a range from 500 to 800 Hz suggests a potential improvement in noise reduction at the driver's ear. In this study the noise source was determined using various accelerometers located throughout the valley of the engine and intake manifold. The overall surface velocity of the engine valley was ranked with respect to the overall surface velocity of the intake manifold. An intensity mapping technique was also used to determine the major component noise contribution. In order to validate the experimental findings, a series of analysis was also conducted. The analysis model included not only the plastic intake manifold, but also the whole powertrain.
Technical Paper

Application of a Laser Vibrometer for Automotive Aeroacoustic Analysis

1997-05-20
972065
The Scanning Laser Vibrometer can make full field, high resolution measurements of the normal surface velocity of automotive door glass and sheet metal vibrations. These properties make the vibrometer a very useful tool for locating compliant and noisy areas on the surface of a vehicle, generated by exterior wind noise. An advantage of the vibrometer is that it measures the vibration of the surface, capturing the transfer of noise through the surface, rather than simply measuring the exterior wind noise. Methods of experimental setup, testing, and problem analysis on outside rear view mirror/A-pillar/Sideglass configurations and body panel vibrations are discussed in the paper.
Technical Paper

Assessment Metric Identification and Evaluation for Side Airbag (SAB) Development

2011-04-12
2011-01-0257
This paper discusses steps for identifying, evaluating and recommending a quantifiable design metric or metrics for Side Airbag (SAB) development. Three functionally related and desirable attributes of a SAB are assumed at the onset, namely, effective SAB coverage, load distribution and efficient energy management at a controlled force level. The third attribute however contradicts the “banana shaped” force-displacement response that characterizes the ineffective energy management reality of most production SAB. In this study, an estimated ATD to SAB interaction energy is used to size and recommend desired force-deformation characteristic of a robust energy management SAB. The study was conducted in the following three phases and corresponding objectives: Phase 1 is a SAB assessment metric identification and estimation, using a uniform block attached to a horizontal impact machine.
Technical Paper

Assessment of Magnetohydrodynamic Angular Rate Sensors in Measuring Ankle Rotations During Vehicle's Crash Tests

2000-03-06
2000-01-0609
While testing vehicles for crash, particularly the offset frontal crash mode, new devices and techniques are needed to enhance the ability to measure rotations of certain vehicle components and dummy parts (or joints). The reason for this new demand is that the capabilities of existing techniques or devices in measuring rotations of small masses in confined areas are limited. Examples of the desired measurements are the rotations of dummy's feet and tibias as well as the rotations of the vehicle's toe-board during intrusion. These measurements help to understand dummy's ankle loads as a result of different intrusion rates. Furthermore, having these measurements is very beneficial to the validation of the computer models used in simulating the behavior of dummy's lower extremities in high intrusion crashes. Recent research demonstrated the use of an angular rate sensor, based on magnetohydrodynamic principles, on Hybrid-III dummies and cadavers.
Technical Paper

Automotive Field of View Analysis Using Polar Plots

1995-02-01
950602
This paper describes how polar plots are constructed and used to evaluate fields of view from vehicles. A polar plot presents a driver's three dimensional view of the vehicle structure, such as the window openings or mirrors, and the objects outside of the vehicle, such as other vehicles in adjacent lanes, in a two dimensional angular (or polar) field. These plots are simple and effective in understanding and visualizing complex visibility problems. Since the plot is made in angular space, a Human Factors Engineer can use the plots for direct assessment of drivers' visual problems, such as sizes of monocular and binocular obscurations. Location of visual targets in the driver's peripheral vision, and magnitude of eye and head turn angles, can be easily determined by measuring coordinates of details shown in a polar plot.
Book

Automotive Safety

1990-04-01
The increasing importance of safety performance in all aspects of motor vehicle design, development, manufacture and marketing makes it necessary for professionals working in these areas to be more aware of safety considerations. The background material and concepts presented in this book will be useful as a basis to aid in the understanding of future developments in this fascinating area.
X