Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

A Biomechanical Analysis of Head, Neck, and Torso Injuries to Child Surrogates Due to Sudden Torso Acceleration

1984-10-01
841656
This paper reports on the injuries to the head, neck and thorax of fifteen child surrogates, subjected to varying levels of sudden acceleration. Measured response data in the child surrogate tests and in matched tests with a three-year-old child test dummy are compared to the observed child surrogates injury levels to develop preliminary tolerance data for the child surrogate. The data are compared with already published data in the literature.
Technical Paper

A Comparative Study of Recurrent Neural Network Architectures for Battery Voltage Prediction

2021-09-21
2021-01-1252
Electrification is the well-accepted solution to address carbon emissions and modernize vehicle controls. Batteries play a critical in the journey of electrification and modernization with battery voltage prediction as the foundation for safe and efficient operation. Due to its strong dependency on prior information, battery voltage was estimated with recurrent neural network methods in the recent literatures exploring a variety of deep learning techniques to estimate battery behaviors. In these studies, standard recurrent neural networks, gated recurrent units, and long-short term memory are popular neural network architectures under review. However, in most cases, each neural network architecture is individually assessed and therefore the knowledge about comparative study among three neural network architecture is limited. In addition, many literatures only studied either the dynamic voltage response or the voltage relaxation.
Technical Paper

A Crash Simulation of Instrument Panel Knee Bolster Using Hybrid III Dummy Lower Torso

1995-02-01
951067
This paper reports the analytical procedure developed for a simulation of knee impact during a barrier crash using a hybrid III dummy lower torso. A finite element model of the instrument panel was generated. The dummy was seated in mid-seat position and was imparted an initial velocity so that the knee velocity at impact corresponded to the secondary impact velocity during a barrier crash. The procedure provided a reasonably accurate simulation of the dummy kinematics. This simulation can be used for understanding the knee bolster energy management system. The methodology developed has been used to simulate impact on knee for an occupant belted or unbelted in a frontal crash. The influence of the vehicle interior on both the dummy kinematics and the impact locations was incorporated into the model. No assumptions have been made for the knee impact locations, eliminating the need to assume knee velocity vectors.
Journal Article

A Pareto Frontier Analysis of Renewable-Energy Consumption, Range, and Cost for Hydrogen Fuel Cell vs. Battery Electric Vehicles

2012-04-16
2012-01-1224
As automakers strategize approaches to sustainable vehicle technologies, alternative powertrains must be considered to reduce future fleet vehicle emissions and improve energy security. These alternative vehicles include different fuels and electrification. The ultimate for on-road CO2 reductions is a zero emission vehicle, which can be achieved by either a hydrogen fuel cell or battery electric vehicle. These vehicles would also require a renewable energy source to provide their propulsion energy in order to achieve maximum sustainability for both CO2 reduction and energy security. Renewable energy sources such as wind or solar result in heat or electricity that needs to be generated into an energy carrier such as hydrogen or stored in a battery. When examining these options based strictly on the efficiency path, previous analysis have concluded fuel cell vehicles may not be an appropriate suitability strategy in comparison to battery electric vehicles.
Technical Paper

A Technique to Predict Thermal Buckling in Automotive Body Panels by Coupling Heat Transfer and Structural Analysis

2014-04-01
2014-01-0943
This paper describes a comprehensive methodology for the simulation of vehicle body panel buckling in an electrophoretic coat (electro-coat or e-coat) and/or paint oven environment. The simulation couples computational heat transfer analysis and structural analysis. Heat transfer analysis is used to predict temperature distribution throughout a vehicle body in curing ovens. The vehicle body temperature profile from the heat transfer analysis is applied as an input for a structural analysis to predict buckling. This study is focused on the radiant section of the curing ovens. The radiant section of the oven has the largest temperature gradients within the body structure. This methodology couples a fully transient thermal analysis to simulate the structure through the electro-coat and paint curing environments with a structural, buckling analysis.
Technical Paper

Accelerated Testing of Nonvolatile Memory Retention

1984-02-01
840488
This paper discusses the testing for retentivity of non-volatile memories. The physics associated with the reliable production of various non-volatile data storage devices has long been a topic of debate. The ability to reliably produce devices which endure erase/write cycling and retain data for extended periods of time has been questionable. Recent improvements in IC processing has given rise to claims of enhancements in both of these areas. Non-volatile memories are attractive in many automotive electronic applications where battery backup is neither convenient or feasible, but because of reliability concerns they have not found their way into critical applications. In applications like odometer or emission control calibrations it is imperative that memory retention is assured. In order to verify the reliability of the various available non-volatile memory devices, an accelerated test program was instituted.
Technical Paper

Additional Notes on Finite Element Models of Deformable Featureless Headform

1997-02-24
970164
Model characteristics of a finite element deformable featureless headform with one to four layers of solid elements for the headform skin are studied using both the LS-DYNA3D and FCRASH codes. The models use a viscoelastic material law whose constitutive parameters are established through comparisons of drop test simulations at various impact velocities with the test data. Results indicate that the one-layer model has a significant distinct characteristic from the other (2-to-4-layer) models, thus requiring different parametric values. Similar observation is also noticed in simulating drop tests with one and two layers of solid elements for the headform skin using PAM-CRASH. When using the same parametric values for the viscoelastic material, both the LS-DYNA3D and FCRASH simulations yield the same results under identical impact conditions and, thereby, exhibit a “functional equivalency” between these two codes.
Technical Paper

Advanced Control of Engine RPM for a More Intuitive Driving Experience in Power Split Hybrid Electric Vehicles

2010-10-25
2010-01-2194
The Auto Industry is responding to the environment and energy conservation concerns by ramping up production of hybrid electric vehicles (HEV). As the initial hurdles of making the powertrain operate are overcome, challenges such as making the powertrain feel more refined and intuitive remain. This paper investigates one of the key parameters for delivering that refinement: engine RPM behavior. Ideal RPM behavior is explored and included in the design of a control system. System implications are examined with regard to the effect of engine RPM scheduling on Battery usage and vehicle responsiveness.
Technical Paper

An Application of Ant Colony Optimization to Energy Efficient Routing for Electric Vehicles

2013-04-08
2013-01-0337
With the increased market share of electric vehicles, the demand for energy-efficient routing algorithms specifically optimized for electric vehicles has increased. Traditional routing algorithms are focused on optimizing the shortest distance or the shortest time in finding a path from point A to point B. These traditional methods have been working well for fossil fueled vehicles. Electric vehicles, on the other hand, require different route optimization techniques. Negative edge costs, battery power limits, battery capacity limits, and vehicle parameters that are only available at query time, make the task of electric vehicle routing a challenging problem. In this paper, we present an ant colony based, energy-efficient routing algorithm that is optimized and designed for electric vehicles. Simulation results show improvements in the energy consumption of electric vehicles when applied to a start-to-destination routing problem.
Technical Paper

An Evaluation of the SAE Recommended Design Changes to the Hybrid III Dummy Hip Joint

1995-02-01
950665
The SAE Large Male and Small Female Dummy Task Group has recommended a change to the Hybrid III dummy hip joint. This change was made because of a non-biofidelic interference in the current design that can influence chest accelerations. The modifications include a new femur casting shaft design and the addition of an elastomeric stop to the top of the casting. Static testing and Hyge sled tests were done to evaluate the modifications. Based on the results, the new design satisfied the requirements set by the SAE task group and reduced the influence of hip joint characteristics on chest accelerations.
Technical Paper

An Experimental Battery Powered Ford Cortina Estate Car

1970-02-01
700024
The design of the Ford Cortina Estate Car converted to propulsion by currently available batteries is described, and results for power train component performance test and vehicle driving characteristics are given. Concept and purpose of this test vehicle are discussed, and chassis and body modifications are described. Design of the electric power train, employing a dc commutator motor and dc solid state chopper controller, is developed. The car instrumentation is described and operating experience in several driving modes is reported. A discussion of battery characteristics concludes the paper.
Technical Paper

Assessment Metric Identification and Evaluation for Side Airbag (SAB) Development

2011-04-12
2011-01-0257
This paper discusses steps for identifying, evaluating and recommending a quantifiable design metric or metrics for Side Airbag (SAB) development. Three functionally related and desirable attributes of a SAB are assumed at the onset, namely, effective SAB coverage, load distribution and efficient energy management at a controlled force level. The third attribute however contradicts the “banana shaped” force-displacement response that characterizes the ineffective energy management reality of most production SAB. In this study, an estimated ATD to SAB interaction energy is used to size and recommend desired force-deformation characteristic of a robust energy management SAB. The study was conducted in the following three phases and corresponding objectives: Phase 1 is a SAB assessment metric identification and estimation, using a uniform block attached to a horizontal impact machine.
Technical Paper

Assessment of Magnetohydrodynamic Angular Rate Sensors in Measuring Ankle Rotations During Vehicle's Crash Tests

2000-03-06
2000-01-0609
While testing vehicles for crash, particularly the offset frontal crash mode, new devices and techniques are needed to enhance the ability to measure rotations of certain vehicle components and dummy parts (or joints). The reason for this new demand is that the capabilities of existing techniques or devices in measuring rotations of small masses in confined areas are limited. Examples of the desired measurements are the rotations of dummy's feet and tibias as well as the rotations of the vehicle's toe-board during intrusion. These measurements help to understand dummy's ankle loads as a result of different intrusion rates. Furthermore, having these measurements is very beneficial to the validation of the computer models used in simulating the behavior of dummy's lower extremities in high intrusion crashes. Recent research demonstrated the use of an angular rate sensor, based on magnetohydrodynamic principles, on Hybrid-III dummies and cadavers.
Book

Automotive Safety

1990-04-01
The increasing importance of safety performance in all aspects of motor vehicle design, development, manufacture and marketing makes it necessary for professionals working in these areas to be more aware of safety considerations. The background material and concepts presented in this book will be useful as a basis to aid in the understanding of future developments in this fascinating area.
Technical Paper

Automotive Vehicle Body Temperature Prediction in a Paint Oven

2014-04-01
2014-01-0644
Automotive vehicle body electrophoretic (e-coat) and paint application has a high degree of complexity and expense in vehicle assembly. These steps involve coating and painting the vehicle body. Each step has multiple coatings and a curing process of the body in an oven. Two types of heating methods, radiation and convection, are used in the ovens to cure coatings and paints during the process. During heating stage in the oven, the vehicle body has large thermal stresses due to thermal expansion. These stresses may cause permanent deformation and weld/joint failure. Body panel deformation and joint failure can be predicted by using structural analysis with component surface temperature distribution. The prediction will avoid late and costly changes to the vehicle design. The temperature profiles on the vehicle components are the key boundary conditions used to perform structure analysis.
Technical Paper

Battery Development for Stop-Start Application in Brazilian Market

2013-04-08
2013-01-1526
There is a growing worldwide concern regarding the environmental aspects related to the performance of a corporation and its products, whether by consumer demand or government requirements. The constant pressure for innovations and improvements related to sustainable development are current issues in everyday life of any institution that seeks to consolidate a position of acceptance and competitiveness in the global market. The automotive industry is one of the markets more involved and challenged to the demand of the environmental requirements in regards the limits of pollutant emissions and consequently fuel consumption. The European and North America vehicles already have more electrical content inside (either related to safety and comfort or even needs related to weather), which results in significantly higher consumption levels than traditionally observed in Brazil's application.
Technical Paper

Biomechanical Assessment of a Rear-Seat Inflatable Seatbelt in Frontal Impacts

2011-11-07
2011-22-0008
This study evaluated the biomechanical performance of a rear-seat inflatable seatbelt system and compared it to that of a 3-point seatbelt system, which has a long history of good real-world performance. Frontal-impact sled tests were conducted with Hybrid III anthropomorphic test devices (ATDs) and with post mortem human subjects (PMHS) using both restraint systems and a generic rear-seat configuration. Results from these tests demonstrated: a) reduction in forward head excursion with the inflatable seatbelt system when compared to that of a 3-point seatbelt and; b) a reduction in ATD and PMHS peak chest deflections and the number of PMHS rib fractures with the inflatable seatbelt system and c) a reduction in PMHS cervical-spine injuries, due to the interaction of the chin with the inflated shoulder belt. These results suggest that an inflatable seatbelt system will offer additional benefits to some occupants in the rear seats.
Technical Paper

Biomechanical Design Considerations for Side Impact

1989-02-01
890386
Side impact collisions account for about 29% of all vehicle occupant fatalities and for about one-fifth of all the “harm” to vehicle occupants. This paper addresses many aspects of side impact induced injuries which vehicle planners and designers may choose to consider during the evolution of a vehicle design. The proposed NHTSA side impact test, side impact dummies, the biomechanics of different human body areas and general concepts for increased occupant protection are discussed from a theoretical point of view. It is believed that this paper or a future update of it, can only become a useful tool when there is general agreement that it reflects solid biomechanical direction which in turn, can be reflected in actual, practicable, responsible hardware design.
Journal Article

Centralized Torque Controller for a Nonminimum Phase Phenomenon in a Powersplit HEV

2012-04-16
2012-01-1026
Torque controls for the engine and electric motors in a Powersplit HEV are keys to the success of balancing fuel economy, driveability, and battery power control. The electric variable transmission (EVT) offers an opportunity to let the engine operate at system-optimal fuel efficient points independently of any load. Existing work shows such a benefit can be realized through a decentralized control structure that translates the driver inputs to independent engine torque and speed control. However, our study shows that the decentralized control structures have a fundamental limitation that arises from the nonminimum phase (NMP) zero in the transfer function from the driver power command to the generator torque change rate, and thus not only is it difficult to obtain smooth generator torque but also it can cause violations on battery power limits during transients. Additionally, it adversely affects the driveability due to the generator torque transients reflected at the ring gear.
Technical Paper

Charge Capacity Versus Charge Time in CC-CV and Pulse Charging of Li-Ion Batteries

2013-04-08
2013-01-1546
Due to their high energy density and low self-discharge rates, lithium-ion batteries are becoming the favored solution for portable electronic devices and electric vehicles. Lithium-Ion batteries require special charging methods that must conform to the battery cells' power limits. Many different charging methods are currently used, some of these methods yield shorter charging times while others yield more charge capacity. This paper compares the constant-current constant-voltage charging method against the time pulsed charging method. Charge capacity, charge time, and cell temperature variations are contrasted. The results allow designers to choose between these two methods and select their parameters to meet the charging needs of various applications.
X