Refine Your Search

Topic

Author

Search Results

Technical Paper

A Modified Monte-Carlo Approach to Simulation-Based Vehicle Parameter Design with Multiple Performance Objectives and Multiple Scenarios

2002-03-04
2002-01-1186
Shorter development times in the automotive industry are leading to the increased use of computer simulation in the vehicle design cycle to pre-optimize vehicle concepts. The focus of the work presented in this study is vehicle dynamic performance in different driving maneuvers. More specifically this paper presents a methodology for simulation-based parameter design of vehicles for excellent performance in multiple maneuvers. The model used in the study consists of eight degrees-of-freedom and has been validated previously. The vehicle data used is for a commercially available vehicle. A number of different driving scenarios (maneuvers) based on ISO standards for transient dynamic behavior are implemented and performance indices are calculated for each individual maneuver considered. Vehicle performance is assessed based on the performance indices.
Technical Paper

A Multi-Objective Power Component Optimal Sizing Model for Battery Electric Vehicles

2021-04-06
2021-01-0724
With recent advances in electric vehicles, there is a plethora of powertrain topologies and components available in the market. Thus, the performance of electric vehicles is highly sensitive to the choice of various powertrain components. This paper presents a multi-objective optimization model that can optimally select component sizes for batteries, supercapacitors, and motors in regular passenger battery-electric vehicles (BEVs). The BEV topology presented here is a hybrid BEV which consists of both a battery pack and a supercapacitor bank. Focus is placed on optimal selection of the battery pack, motor, and supercapacitor combination, from a set of commercially available options, that minimizes the capital cost of the selected power components, the fuel cost over the vehicle lifespan, and the 0-60 mph acceleration time. Available batteries, supercapacitors, and motors are from a market survey.
Technical Paper

A User Configurable Powertrain Controller with Open Software Management

2007-04-16
2007-01-1601
The emphasis on vehicle fuel economy and tailpipe emissions, coupled with a trend toward greater system functionally, has prompted automotive engineers to develop on-board control systems with increased requirements and complexity. Mainstream engine controllers regulate fuel, spark, and other subsystems using custom solutions that incorporate off-the-shelf hardware components. Although the digital processor core and the peripheral electronics may be similar, these controllers are targeted to fixed engine architectures which limit their flexibility across vehicle platforms. Moreover, additional software needs are emerging as electronics continue to permeate the ground transportation sector. Thus, automotive controllers will be required to assume increased responsibility while effectively communicating with distributed hardware modules.
Technical Paper

An Exergy-Based Methodology for Decision-Based Design of Integrated Aircraft Thermal Systems

2000-10-10
2000-01-5527
This paper details the concept of using an exergy-based method as a thermal design methodology tool for integrated aircraft thermal systems. An exergy-based approach was applied to the design of an environmental control system (ECS) of an advanced aircraft. Concurrently, a traditional energy-based approach was applied to the same system. Simplified analytical models of the ECS were developed for each method and compared to determine the validity of using the exergy approach to facilitate the design process in optimizing the overall system for a minimum gross takeoff weight (GTW). The study identified some roadblocks to assessing the value of using an exergy-based approach. Energy and exergy methods seek answers to somewhat different questions making direct comparisons awkward. Also, high entropy generating devices can dominate the design objective of the exergy approach.
Journal Article

An Integrated Cooling System for Hybrid Electric Vehicle Motors: Design and Simulation

2018-04-03
2018-01-1108
Hybrid electric vehicles offer the advantages of reduced emissions and greater travel range in comparison to conventional and electric ground vehicles. Regardless of propulsion strategy, efficient cooling of electric motors remains an open challenge due to the operating cycles and ambient conditions. The onboard thermal management system must remove the generated heat so that the motors and other vehicle components operate within their designed temperature ranges. In this article, an integrated thermal structure, or cradle, is designed to efficiently transfer heat within the motor housing to the end plates for transmission to an external heat exchanger. A radial array of heat pipes function as an efficient thermal connector between the motor and heat connector, or thermal bus, depending on the configuration. Cooling performance has been evaluated for various driving cycles.
Journal Article

Automatic Formal Verification of SysML State Machine Diagrams for Vehicular Control Systems

2021-04-06
2021-01-0260
Vehicular control systems are characterized with numerous complex interactions with a steady rise of autonomous functions, which makes it more challenging for designers and safety engineers to identify unexpected failures. These systems tend to be highly integrated and exhibit features like concurrency for which traditional verification and validation techniques (i.e. testing and simulation) are insufficient to provide rigorous and complete assessment. Model Checking, a well-known formal verification technique, can be used to rigorously prove the correctness of such systems according to design Requirements. In particular, Model Checking is a method for formally verifying finite-state concurrent systems. Specifications about the system are expressed as temporal logic formulas, and efficient symbolic algorithms are used to traverse the model defined by the system and check if the specification holds or not.
Journal Article

Automotive Waste Heat Recovery after Engine Shutoff in Parking Lots

2019-04-02
2019-01-0157
1 The efficiency of internal combustion engines remains a research challenge given the mechanical friction and thermodynamic losses. Although incremental engine design changes continue to emerge, the harvesting of waste heat represents an immediate opportunity to address improved energy utilization. An external mobile thermal recovery system for gasoline and diesel engines is proposed for use in parking lots based on phase change material cartridges. Heat is extracted via a retrofitted conduction plate beneath the engine block after engine shutoff. An autonomous robot attaches the cartridge to the plate and transfers the heat from the block to the Phase Change Material (PCM) and returns later to retrieve the packet. These reusable cartridges are then driven to a Heat Extraction and Recycling Tower (HEART) facility where a heat exchanger harvests the thermal energy stored in the cartridges.
Technical Paper

Benchmarking the Localization Accuracy of 2D SLAM Algorithms on Mobile Robotic Platforms

2020-04-14
2020-01-1021
Simultaneous Localization and Mapping (SLAM) algorithms are extensively utilized within the field of autonomous navigation. In particular, numerous open-source Robot Operating System (ROS) based SLAM solutions, such as Gmapping, Hector, Cartographer etc., have simplified deployments in application. However, establishing the accuracy and precision of these ‘out-of-the-box’ SLAM algorithms is necessary for improving the accuracy and precision of further applications such as planning, navigation, controls. Existing benchmarking literature largely focused on validating SLAM algorithms based upon the quality of the generated maps. In this paper, however, we focus on examining the localization accuracy of existing 2-dimensional LiDAR based indoor SLAM algorithms. The fidelity of these implementations is compared against the OptiTrack motion capture system which is capable of tracking moving objects at sub-millimeter level precision.
Technical Paper

Capability-Driven Adaptive Task Distribution for Flexible Multi-Human-Multi-Robot (MH-MR) Manufacturing Systems

2020-04-14
2020-01-1303
Collaborative robots are more and more used in smart manufacturing because of their capability to work beside and collaborate with human workers. With the deployment of these robots, manufacturing tasks are more inclined to be accomplished by multiple humans and multiple robots (MH-MR) through teaming effort. In such MH-MR collaboration scenarios, the task distribution among the multiple humans and multiple robots is very critical to efficiency. It is also more challenging due to the heterogeneity of different agents. Existing approaches in task distribution among multiple agents mostly consider humans with assumed or known capabilities. However human capabilities are always changing due to various factors, which may lead to suboptimal efficiency. Although some researches have studied several human factors in manufacturing and applied them to adjust the robot task and behaviors.
Technical Paper

Charging Load Estimation for a Fleet of Autonomous Vehicles

2024-04-09
2024-01-2025
In intelligent surveillance and reconnaissance (ISR) missions, multiple autonomous vehicles, such as unmanned ground vehicles (UGVs) or unmanned aerial vehicles (UAVs), coordinate with each other for efficient information gathering. These vehicles are usually battery-powered and require periodic charging when deployed for continuous monitoring that spans multiple hours or days. In this paper, we consider a mobile host charging vehicle that carries distributed sources, such as a generator, solar PV and battery, and is deployed in the area where the UAVs and UGVs operate. However, due to uncertainties, the state of charge of UAV and UGV batteries, their arrival time at the charging location and the charging duration cannot be predicted accurately.
Technical Paper

Containerization Approach for High-Fidelity Terramechanics Simulations

2023-04-11
2023-01-0105
Integrated modeling of vehicle, tire and terrain is a fundamental challenge to be addressed for off-road autonomous navigation. The complexities arise due to lack of tools and techniques to predict the continuously varying terrain and environmental conditions and the resultant non-linearities. The solution to this challenge can now be found in the plethora of data driven modeling and control techniques that have gained traction in the last decade. Data driven modeling and control techniques rely on the system’s repeated interaction with the environment to generate a lot of data and then use a function approximator to fit a model for the physical system with the data. Getting good quality and quantity of data may involve extensive experimentation with the physical system impacting developer’s resource. The process is computationally expensive, and the overhead time required is high.
Journal Article

Control Allocation for Multi-Axle Hub Motor Driven Land Vehicles

2016-04-05
2016-01-1670
This paper outlines a real-time hierarchical control allocation algorithm for multi-axle land vehicles with independent hub motor wheel drives. At the top level, the driver’s input such as pedal position or steering wheel position are interpreted into desired global state responses based on a reference model. Then, a locally linearized rigid body model is used to design a linear quadratic regulator that generates the desired global control efforts, i.e., the total tire forces and moments required track the desired state responses. At the lower level, an optimal control allocation algorithm coordinates the motor torques in such a manner that the forces generated at tire-road contacts produce the desired global control efforts under some physical constraints of the actuation and the tire/wheel dynamics. The performance of the proposed control system design is verified via simulation analysis of a 3-axle heavy vehicle with independent hub-motor drives.
Journal Article

Control of a Thermoelectric Cooling System for Vehicle Components and Payloads - Theory and Test

2017-03-28
2017-01-0126
Hybrid vehicle embedded systems and payloads require progressively more accurate and versatile thermal control mechanisms and strategies capable of withstanding harsh environments and increasing power density. The division of the cargo and passenger compartments into convective thermal zones which are independently managed can lead to a manageable temperature control problem. This study investigates the performance of a Peltier-effect thermoelectric zone cooling system to regulate the temperature of target objects (e.g., electronic controllers, auxiliary computer equipment, etc) within ground vehicles. Multiple thermoelectric cooling modules (TEC) are integrated with convective cooling fans to provide chilled air for convective heat transfer from a robust, compact, and solid state device. A series of control strategies have been designed and evaluated to track a prescribed time-varying temperature profile while minimizing power consumption.
Technical Paper

Coolant Flow Control Strategies for Automotive Thermal Management Systems

2002-03-04
2002-01-0713
The automotive thermal management system is responsible for maintaining engine and passenger compartment temperatures, which promote normal combustion events and passenger comfort. This system traditionally circulates a water ethylene glycol mixture through the engine block using a belt-driven water pump, wax pellet thermostat valve, radiator with electric fan, and heater core. Although vehicle cooling system performance has been reliable and acceptable for many decades, advances in mechatronics have permitted upgrades to powertrain and chassis components. In a similar spirit, the introduction of a variable speed electric water pump and servo-motor thermostat valve allows ECU-based thermal control. This paper examines the integration of an electric water pump and intelligent thermostat valve to satisfy the engine's basic cooling requirements, minimize combustion chamber fluctuations due to engine speed changes, and permit quick heating of a cold block.
Technical Paper

Decomposition and Coordination to Support Tradespace Analysis for Ground Vehicle Systems

2022-03-29
2022-01-0370
Tradespace analysis is used to define the characteristics of the solution space for a vehicle design problem enabling decision-makers (DMs) to evaluate the risk-benefit posture of a vehicle design program. The tradespace itself is defined by a set of functional objectives defined by vehicle simulations and evaluating the performance of individual design solutions that are modeled by a set of input variables. Of special interest are efficient design solutions because their perfomance is Pareto meaning that none of their functional objective values can be improved without decaying the value of another objective. The functional objectives are derived from a combination of simulations to determine vehicle performance metrics and direct calculations using vehicle characteristics. The vehicle characteristics represent vendor specifications of vehicle subsystems representing various technologies.
Technical Paper

Engine-in-the-Loop Study of a Hierarchical Predictive Online Controller for Connected and Automated Heavy-Duty Vehicles

2020-04-14
2020-01-0592
This paper presents a cohesive set of engine-in-the-loop (EIL) studies examining the use of hierarchical model-predictive control for fuel consumption minimization in a class-8 heavy-duty truck intended to be equipped with Level-1 connectivity/automation. This work is motivated by the potential of connected/automated vehicle technologies to reduce fuel consumption in both urban/suburban and highway scenarios. The authors begin by presenting a hierarchical model-predictive control scheme that optimizes multiple chassis and powertrain functionalities for fuel consumption. These functionalities include: vehicle routing, arrival/departure at signalized intersections, speed trajectory optimization, platooning, predictive optimal gear shifting, and engine demand torque shaping. The primary optimization goal is to minimize fuel consumption, but the hierarchical controller explicitly accounts for other key objectives/constraints, including operator comfort and safe inter-vehicle spacing.
Technical Paper

Fusing Offline and Online Trajectory Optimization Techniques for Goal-to-Goal Navigation of a Scaled Autonomous Vehicle

2021-04-06
2021-01-0097
Enabling self-driving vehicles to efficiently and autonomously navigate through an obstacle-filled environment remains a topic of significant contemporary research interest. Motion-planning frameworks, encapsulating both path- and trajectory-planning, have played a dominant role in realizing the deployment of a “sense-think-act” intelligence for autonomous vehicles. However, verification and validation of such intelligence on actual self-driving autonomous vehicles has been limited. Simulation-based verification and validation has the advantage of permitting diverse scenario-based testing and comprehensive “what-if” analyses - but is ultimately limited by the simulation fidelity and realism. In contrast, testing on full-scale real-world systems is constrained by the usual challenges of time, space, and cost engendered in reproducing diverse scenarios in practice.
Journal Article

Fuzzy Logic Approach to Vehicle Stability Control of Oversteer

2011-04-12
2011-01-0268
Traditional Electronic Stability Control (ESC) for automobiles is usually accomplished through the use of estimated vehicle dynamics from simplified models that rely on parameters such as cornering stiffness that can change with the vehicle state and time. This paper proposes a different method for electronic stability control of oversteer by predicting the degree of instability in a vehicle. The algorithm is solely based on measurable response characteristics including lateral acceleration, yaw rate, speed, and driver steering input. These signals are appropriately conditioned and evaluated with fuzzy logic to determine the degree of instability present. When the “degree of instability” passes a certain threshold, the appropriate control action is applied to the vehicle in the form of differential yaw braking. Using only the measured response of the vehicle alleviates the problem of degraded performance when vehicle parameters change.
Technical Paper

Handling Deviation for Autonomous Vehicles after Learning from Small Dataset

2018-04-03
2018-01-1091
Learning only from a small set of examples remains a huge challenge in machine learning. Despite recent breakthroughs in the applications of neural networks, the applicability of these techniques has been limited by the requirement for large amounts of training data. What’s more, the standard supervised machine learning method does not provide a satisfactory solution for learning new concepts from little data. However, the ability to learn enough information from few samples has been demonstrated in humans. This suggests that humans may make use of prior knowledge of a previously learned model when learning new ones on a small amount of training examples. In the area of autonomous driving, the model learns to drive the vehicle with training data from humans, and most machine learning based control algorithms require training on very large datasets. Collecting and constructing training data set takes a huge amount of time and needs specific knowledge to gather relevant information.
Technical Paper

Implementation and Validation of Behavior Cloning Using Scaled Vehicles

2021-04-06
2021-01-0248
Recent trends in autonomy have emphasized end-to-end deep-learning-based methods that have shown a lot of promise in overcoming the requirements and limitations of feature-engineering. However, while promising, the black-box nature of deep-learning frameworks now exacerbates the need for testing with end-to-end deployments. Further, as exemplars of systems-of-systems, autonomous vehicles (AVs) engender numerous interconnected component-, subsystem and system-level interactions. The ensuing complexity creates challenges for verification and validation at the various component, subsystem- and system-levels as well as end-to-end testing. While simulation-based testing is one promising avenue, oftentimes the lack of adequate fidelity of AV and environmental modeling limits the generalizability. In contrast, full-scale AV testing presents the usual limitations of time-, space-, and cost.
X