Refine Your Search

Topic

Author

Search Results

Technical Paper

A Diesel Engine Emission System Based on Brownian Diffusion a Separation

2021-04-06
2021-01-0583
Diesel engine exhaust poses an ongoing threat to human health as well as to the environment. Automotive exhaust treatment systems have been developed over the years to reduce the large amount of diesel particulate matter (DPM) released to the atmosphere. Current systems can be categorized as selective catalytic reduction, catalytic converters, and diesel particulate filters. This study presents an emission system that focuses on the removal of exhaust particles using Brownian diffusion of DPM toward fog drops followed by cyclonic separation of DPM rich fog drops. The experimental system consisted of a 13.2 kW diesel engine, heat exchanger to cool the exhaust to saturation temperature, ultrasonic fogger, cyclone separator, and recovery of waste particulate. Representative emission tests have been performed at five different diesel engine speeds and corresponding crankshaft loads.
Technical Paper

A Review of Spark-Ignition Engine Air Charge Estimation Methods

2016-04-05
2016-01-0620
Accurate in-cylinder air charge estimation is important for engine torque determination, controlling air-to-fuel ratio, and ensuring high after-treatment efficiency. Spark ignition (SI) engine technologies like variable valve timing (VVT) and exhaust gas recirculation (EGR) are applied to improve fuel economy and reduce pollutant emissions, but they increase the complexity of air charge estimation. Increased air-path complexity drives the need for cost effective solutions that produce high air mass prediction accuracy while minimizing sensor cost, computational effort, and calibration time. A large number of air charge estimation techniques have been developed using a range of sensors sets combined with empirical and/or physics-based models. This paper provides a technical review of research in this area, focused on SI engines.
Technical Paper

A Smart Jersey Highway Barrier with Portal for Small Animal Passage and Driver Alert

2013-04-08
2013-01-0620
Barriers are commonly used on roadways to separate and to protect against vehicles traveling in opposing directions from possible head-on collisions. However, these barriers may interfere with wildlife passage such that animals become trapped on the road. Typically, small animals cannot find safe passage across all traffic lanes due to the presence of solid barriers and eventually die after being hit by a vehicle. The occurrence of animal-to-vehicle collisions also presents a dangerous scenario for motorists as a driver may intuitively swerve to avoid hitting the animal. In this paper, a redesigned Jersey style barrier, named the Clemson smart portal, will be presented and discussed. This roadway barrier features a portal for small animal travel, along with a mechatronic-based warning system to notify drivers of animal passage.
Journal Article

A Systems Approach in Developing an Ultralightweight Outside Mounted Rearview Mirror Using Discontinuous Fiber Reinforced Thermoplastics

2019-04-02
2019-01-1124
Fuel efficiency improvement in automobiles has been a topic of great interest over the past few years, especially with the introduction of the new CAFE 2025 standards. Although there are multiple ways of improving the fuel efficiency of an automobile, lightweighting is one of the most common approaches taken by many automotive manufacturers. Lightweighting is even more significant in electric vehicles as it directly affects the range of the vehicle. Amidst this context of lightweighting, the use of composite materials as alternatives to metals has been proven in the past to help achieve substantial weight reduction. The focus of using composites for weight reduction has however been typically limited to major structural components, such as BiW and closures, due to high material costs. Secondary structural components which contribute approximately 30% of the vehicle weight are usually neglected by these weight reduction studies.
Journal Article

A Thermal Bus for Vehicle Cooling Applications - Design and Analysis

2017-03-28
2017-01-0266
Designing an efficient cooling system with low power consumption is of high interest in the automotive engineering community. Heat generated due to the propulsion system and the on-board electronics in ground vehicles must be dissipated to avoid exceeding component temperature limits. In addition, proper thermal management will offer improved system durability and efficiency while providing a flexible, modular, and reduced weight structure. Traditional cooling systems are effective but they typically require high energy consumption which provides motivation for a paradigm shift. This study will examine the integration of passive heat rejection pathways in ground vehicle cooling systems using a “thermal bus”. Potential solutions include heat pipes and composite fibers with high thermal properties and light weight properties to move heat from the source to ambient surroundings.
Technical Paper

A User-Centered Design Exploration of Fully Autonomous Vehicles’ Passenger Compartments for At-Risk Populations

2018-04-03
2018-01-1318
Autonomous vehicles have the potential to provide mobility to individuals who experience transportation disadvantages due to the inability to drive as a result of physical, cognitive or visual limitations/impairments as well as able-bodied individuals with no/limited desire to drive. Individuals who do not have easy access to transportation have social, academic, health, and career disadvantages in comparison to their peers. Fully autonomous vehicles have the potential to offer mobility solutions to these individuals. A user-centered design approach was utilized by a multidisciplinary team of engineers, human factors specialists, and designers to develop future vehicle features for a broad range of users.
Journal Article

A Virtual Driving Education Simulation System - Hardware and Software with Pilot Study

2013-04-08
2013-01-1407
Novice drivers are often ill-equipped to safely operate a motor vehicle due to their limited repertoire of skills and experiences. However, automotive simulation tools can be applied to better educate young drivers for a number of common driving scenarios. In this paper, the Clemson Automotive Training System (CATS) will be presented to educate and train novice drivers to safely operate four wheel passenger vehicles on paved roadways. A portable automotive simulator can be programmed to emulate a variety of high-crash rate scenarios and roadway geometries. Drivers receive instructions regarding proper driving techniques and behaviors with an opportunity to practice the given vehicle maneuver. An on-line evaluation methodology has been designed to analyze the drivers' capabilities at handling these roadway events. First, a pre-simulation questionnaire evaluates their basic understanding of everyday driving situations.
Technical Paper

A Voice and Pointing Gesture Interaction System for On-Route Update of Autonomous Vehicles’ Path

2019-04-02
2019-01-0679
This paper describes the development and simulation of a voice and pointing gesture interaction system for on-route update of autonomous vehicles’ path. The objective of this research is to provide users of autonomous vehicles a human vehicle interaction mode that enables them to make and communicate spontaneous decisions to the autonomous car, modifying its pre-defined autonomous route in real-time. For example, similar to giving directions to a taxi driver, a user will be able to tell the car «Stop there» or «Take that exit». In this way, the user control/spontaneity vs interaction flexibility dilemma that current autonomous vehicle concepts have, could be solved, potentially increasing the user acceptance of this technology. The system was designed following a level structured state machine approach. The simulations were developed using MATLAB and VREP, a robotics simulation platform, which has accurate vehicle and sensor models.
Technical Paper

Advanced Thermal Management for Internal Combustion Engines - Valve Design, Component Testing and Block Redesign

2006-04-03
2006-01-1232
Advanced engine cooling systems can enhance the combustion environment, increase fuel efficiency, and reduce tailpipe emissions with less parasitic engine load. The introduction of computer controlled electro-mechanical valves, radiator fans, and coolant pumps require mathematic models and real time algorithms to implement intelligent thermal control strategies for prescribed engine temperature tracking. Smart butterfly valves can replace the traditional wax-based thermostat to control the coolant flow based on both engine temperature and operating conditions. The electric water pump and radiator fan replace the mechanically driven components to reduce unnecessary engine loads at high speeds and provide better cooling at low speeds.
Journal Article

An Electric Motor Thermal Bus Cooling System for Vehicle Propulsion - Design and Test

2020-04-14
2020-01-0745
Automotive and truck manufacturers are introducing electric propulsion systems into their ground vehicles to reduce fossil fuel consumption and harmful tailpipe emissions. The mobility shift to electric motors requires a compact thermal management system that can accommodate heat dissipation demands with minimum energy consumption in a confined space. An innovative cooling system design, emphasizing passive cooling methods coupled with a small liquid system, using a thermal bus architecture has been explored. The laboratory experiment features an emulated electric motor interfaced to a thermal cradle and multiple heat rejection pathways to evaluate the transfer of generated heat to the ambient surroundings. The thermal response of passive (e.g., carbon fiber, high thermal conductivity material, thermosyphon) and active cooling systems are investigated for two operating scenarios.
Journal Article

An Engine Thermal Management System Design for Military Ground Vehicle - Simultaneous Fan, Pump and Valve Control

2016-04-05
2016-01-0310
The pursuit of greater fuel economy in internal combustion engines requires the optimization of all subsystems including thermal management. The reduction of cooling power required by the electromechanical coolant pump, radiator fan(s), and thermal valve demands real time control strategies. To maintain the engine temperature within prescribed limits for different operating conditions, the continual estimation of the heat removal needs and the synergistic operation of the cooling system components must be accomplished. The reductions in thermal management power consumption can be achieved by avoiding unnecessary overcooling efforts which are often accommodated by extreme thermostat valve positions. In this paper, an optimal nonlinear controller for a military M-ATV engine cooling system will be presented. The prescribed engine coolant temperature will be tracked while minimizing the pump, fan(s), and valve power usage.
Technical Paper

An Immersive Vehicle-in-the-Loop VR Platform for Evaluating Human-to-Autonomous Vehicle Interactions

2019-04-02
2019-01-0143
The deployment of autonomous vehicles in real-world scenarios requires thorough testing to ensure sufficient safety levels. Driving simulators have proven to be useful testbeds for assisted and autonomous driving functionalities but may fail to capture all the nuances of real-world conditions. In this paper, we present a snapshot of the design and evaluation using a Cooperative Adaptive Cruise Control application of virtual reality platform currently in development at our institution. The platform is designed so to: allow for incorporating live real-world driving data into the simulation, enabling Vehicle-in-the-Loop testing of autonomous driving behaviors and providing us with a useful mean to evaluate the human factor in the autonomous vehicle context.
Technical Paper

An Innovative Electric Motor Cooling System for Hybrid Vehicles - Model and Test

2019-04-02
2019-01-1076
Enhanced electric motor performance in transportation vehicles can improve system reliability and durability over rigorous operating cycles. The design of innovative heat rejection strategies in electric motors can minimize cooling power consumption and associated noise generation while offering configuration flexibility. This study investigates an innovative electric motor cooling strategy through bench top thermal testing on an emulated electric motor. The system design includes passive (e.g., heat pipes) cooling as the primary heat rejection pathway with supplemental conventional cooling using a variable speed coolant pump and radiator fan(s). The integrated thermal structure, “cradle”, transfers heat from the motor shell towards an end plate for heat dissipation to the ambient surroundings or transmission to an external thermal bus to remote heat exchanger.
Journal Article

An Integrated Cooling System for Hybrid Electric Vehicle Motors: Design and Simulation

2018-04-03
2018-01-1108
Hybrid electric vehicles offer the advantages of reduced emissions and greater travel range in comparison to conventional and electric ground vehicles. Regardless of propulsion strategy, efficient cooling of electric motors remains an open challenge due to the operating cycles and ambient conditions. The onboard thermal management system must remove the generated heat so that the motors and other vehicle components operate within their designed temperature ranges. In this article, an integrated thermal structure, or cradle, is designed to efficiently transfer heat within the motor housing to the end plates for transmission to an external heat exchanger. A radial array of heat pipes function as an efficient thermal connector between the motor and heat connector, or thermal bus, depending on the configuration. Cooling performance has been evaluated for various driving cycles.
Journal Article

Approaches for Simulation Model Reuse in Systems Design — A Review

2022-03-29
2022-01-0355
In this paper, we review the literature related to the reuse of computer-based simulation models in the context of systems design. Models are used to capture aspects of existing or envisioned systems and are simulated to predict the behavior of these systems. However, developing such models from scratch requires significant time and effort. Researchers have recognized that the time and effort can be reduced if existing models or model components are reused, leading to the study of model reusability. In this paper, we review the tasks necessary to retrieve and reuse model components from repositories, and to prepare new models and model components such that they are more amenable for future reuse. Model reuse can be significantly enhanced by carefully characterizing the model, and capturing its meaning and intent so that potential users can determine whether the model meets their needs.
Technical Paper

Assessing the Impact of a Novel TBC Material on Heat Transfer in a Spark Ignition Engine through 3D CFD-FEA Co-Simulation Routine

2022-03-29
2022-01-0402
Thermal barrier coatings (TBCs) have been of interest since the 1970s for application in internal combustion (IC) engines. Thin TBCs exhibit a temperature swing phenomenon wherein wall temperatures dynamically respond to the transient working-gas temperature throughout the engine cycle, thus reducing the temperature difference driving the heat transfer. Determining these varying wall temperatures is necessary to evaluate and study the effect of coatings on wall heat transfer. This study focuses on developing a 3D computational fluid dynamics (CFD)-finite element analysis (FEA) coupled simulation, or co-simulation, routine to determine the wall temperatures of a piston coated with a thin TBC layer subject to spark ignition combustion heat flux. A CONVERGE 3D-CFD model was used to simulate the combustion process in a single-cylinder, light-duty experimental spark ignition (SI) engine.
Technical Paper

Assessment of a Safe Driving Program for Novice Operators

2013-04-08
2013-01-0441
A safe driver program has been established through a public-private partnership. This program targets novice drivers and uses a combination of classroom and in-vehicle training exercises to address critical driver errors known to lead to crashes. Students participate in four modules: braking to learn proper stopping technique, obstacle avoidance / reaction time to facilitate proper lane selection and collision avoidance, tailgating to learn about following distances, and loss of control to react appropriately when a vehicle is about to become laterally unstable. Knowledge pre and posttests are also administered at the start and end of the program. Students' in-vehicle driving performance are evaluated by instructors as well as recorded by onboard data acquisition units. The data has been evaluated with objective and subjective grading rubrics. The 70 participants in three classes used as a case study achieved an average skill score of 83.93/100.
Journal Article

Automotive Driving Simulators: Research, Education, and Entertainment

2009-04-20
2009-01-0533
Automotive simulators offer an immersive environment to operate vehicle systems in a safe and repeatable manner. A fundamental question exists regarding their effectiveness for an identified task. For instance, driving simulators can play a significant role in evaluating vehicle designs, developing safety regulations, supporting human factors engineering research, administering driver training and education, and offering individual entertainment. Some of the driving simulator technology users include automotive manufacturers and suppliers, research laboratories at universities and government agencies, driver education and training programs, and motorsports and racing entertainment venues. In each case, the simulator capabilities and functionality must encompass the expectations of the driver to permit their perception of realistic scenarios for evaluation. This paper investigates three driving simulators in terms of their hardware and software, as well as their applications.
Journal Article

Automotive Waste Heat Recovery after Engine Shutoff in Parking Lots

2019-04-02
2019-01-0157
1 The efficiency of internal combustion engines remains a research challenge given the mechanical friction and thermodynamic losses. Although incremental engine design changes continue to emerge, the harvesting of waste heat represents an immediate opportunity to address improved energy utilization. An external mobile thermal recovery system for gasoline and diesel engines is proposed for use in parking lots based on phase change material cartridges. Heat is extracted via a retrofitted conduction plate beneath the engine block after engine shutoff. An autonomous robot attaches the cartridge to the plate and transfers the heat from the block to the Phase Change Material (PCM) and returns later to retrieve the packet. These reusable cartridges are then driven to a Heat Extraction and Recycling Tower (HEART) facility where a heat exchanger harvests the thermal energy stored in the cartridges.
Technical Paper

Capability-Driven Adaptive Task Distribution for Flexible Multi-Human-Multi-Robot (MH-MR) Manufacturing Systems

2020-04-14
2020-01-1303
Collaborative robots are more and more used in smart manufacturing because of their capability to work beside and collaborate with human workers. With the deployment of these robots, manufacturing tasks are more inclined to be accomplished by multiple humans and multiple robots (MH-MR) through teaming effort. In such MH-MR collaboration scenarios, the task distribution among the multiple humans and multiple robots is very critical to efficiency. It is also more challenging due to the heterogeneity of different agents. Existing approaches in task distribution among multiple agents mostly consider humans with assumed or known capabilities. However human capabilities are always changing due to various factors, which may lead to suboptimal efficiency. Although some researches have studied several human factors in manufacturing and applied them to adjust the robot task and behaviors.
X