Refine Your Search

Topic

Author

Search Results

Technical Paper

A Review of Spark-Ignition Engine Air Charge Estimation Methods

2016-04-05
2016-01-0620
Accurate in-cylinder air charge estimation is important for engine torque determination, controlling air-to-fuel ratio, and ensuring high after-treatment efficiency. Spark ignition (SI) engine technologies like variable valve timing (VVT) and exhaust gas recirculation (EGR) are applied to improve fuel economy and reduce pollutant emissions, but they increase the complexity of air charge estimation. Increased air-path complexity drives the need for cost effective solutions that produce high air mass prediction accuracy while minimizing sensor cost, computational effort, and calibration time. A large number of air charge estimation techniques have been developed using a range of sensors sets combined with empirical and/or physics-based models. This paper provides a technical review of research in this area, focused on SI engines.
Journal Article

A Systems Approach in Developing an Ultralightweight Outside Mounted Rearview Mirror Using Discontinuous Fiber Reinforced Thermoplastics

2019-04-02
2019-01-1124
Fuel efficiency improvement in automobiles has been a topic of great interest over the past few years, especially with the introduction of the new CAFE 2025 standards. Although there are multiple ways of improving the fuel efficiency of an automobile, lightweighting is one of the most common approaches taken by many automotive manufacturers. Lightweighting is even more significant in electric vehicles as it directly affects the range of the vehicle. Amidst this context of lightweighting, the use of composite materials as alternatives to metals has been proven in the past to help achieve substantial weight reduction. The focus of using composites for weight reduction has however been typically limited to major structural components, such as BiW and closures, due to high material costs. Secondary structural components which contribute approximately 30% of the vehicle weight are usually neglected by these weight reduction studies.
Journal Article

Application of a Digital Twin Virtual Engineering Tool for Ground Vehicle Maintenance Forecasting

2022-03-29
2022-01-0364
The integration of sensors, actuators, and real-time control in transportation systems enables intelligent system operation to minimize energy consumption and maximize occupant safety and vehicle reliability. The operating cycle of military ground vehicles can be on- and off-road in harsh weather and adversarial environments, which demands continuous subsystem functionality to fulfill missions. Onboard diagnostic systems can alert the operator of a degraded operation once established fault thresholds are exceeded. An opportunity exists to estimate vehicle maintenance needs using model-based predicted trends and eventually compiled information from fleet operating databases. A digital twin, created to virtually describe the dynamic behavior of a physical system using computer-mathematical models, can estimate the system behavior based on current and future operating scenarios while accounting for past effects.
Journal Article

Approaches for Simulation Model Reuse in Systems Design — A Review

2022-03-29
2022-01-0355
In this paper, we review the literature related to the reuse of computer-based simulation models in the context of systems design. Models are used to capture aspects of existing or envisioned systems and are simulated to predict the behavior of these systems. However, developing such models from scratch requires significant time and effort. Researchers have recognized that the time and effort can be reduced if existing models or model components are reused, leading to the study of model reusability. In this paper, we review the tasks necessary to retrieve and reuse model components from repositories, and to prepare new models and model components such that they are more amenable for future reuse. Model reuse can be significantly enhanced by carefully characterizing the model, and capturing its meaning and intent so that potential users can determine whether the model meets their needs.
Technical Paper

Assessment of a Safe Driving Program for Novice Operators

2013-04-08
2013-01-0441
A safe driver program has been established through a public-private partnership. This program targets novice drivers and uses a combination of classroom and in-vehicle training exercises to address critical driver errors known to lead to crashes. Students participate in four modules: braking to learn proper stopping technique, obstacle avoidance / reaction time to facilitate proper lane selection and collision avoidance, tailgating to learn about following distances, and loss of control to react appropriately when a vehicle is about to become laterally unstable. Knowledge pre and posttests are also administered at the start and end of the program. Students' in-vehicle driving performance are evaluated by instructors as well as recorded by onboard data acquisition units. The data has been evaluated with objective and subjective grading rubrics. The 70 participants in three classes used as a case study achieved an average skill score of 83.93/100.
Journal Article

Chassis Dynamometer as a Development Platform for Vehicle Hardware In-the-Loop “VHiL”

2013-05-15
2013-01-9018
This manuscript provides a review of different types and categorization of the chassis dynamometer systems. The review classifies the chassis dynamometers based on the configuration, type of rollers and the application type. Additionally the manuscript discusses several application examples of the chassis dynamometer including: performance and endurance mileage accumulation tests, fuel efficiency and exhaust emissions, noise, vibration and harshness testing (NVH). Different types of the vehicle attachment system in the dynamometer cell and its influences on the driving force characteristics and the vehicle acoustic signature is also discussed. The text also highlights the impact of the use of the chassis dynamometer as a development platform and its impact on the development process. Examples of using chassis dynamometer as a development platform using Vehicle Hardware In-the-Loop (VHiL) approach including drivability assessment and transmission calibrations are presented.
Technical Paper

Clarity of View: An AHP Multi-Factor Evaluation Framework for Driver Awareness Systems in Heavy Vehicles

2015-04-14
2015-01-1704
Several emerging technologies hold great promise to improve the 360-degree awareness of the heavy vehicle driver. However, current industry-standard evaluation methods do not measure all the comprehensive factors contributing to the overall effectiveness of such systems. As a result, industry is challenged to evaluate new technologies in a way that is objective and allows the comparison of different systems in a consistent manner. This research aims to explore the methods currently in use, identify relevant factors not presently incorporated in standard procedures, and recommend best practices to accomplish an overall measurement system that can quantify performance beyond simply the field of view of a driver visibility system. We introduce a new metric, “Clarity of View,” that incorporates several important factors for visibility systems including: gap acceptance accuracy, image detection time, and distortion.
Technical Paper

Criticality Assessment of Simulation-Based AV/ADAS Test Scenarios

2022-03-29
2022-01-0070
Testing any new safety technology of Autonomous Vehicles (AV) and Advanced Driver Assistance Systems (ADAS) requires simulation-based validation and verification. The specific scenarios used for testing, outline incidences of accidents or near-miss events. In order to simulate these scenarios, specific values for all the above parameters are required including the ego vehicle model. The ‘criticality’ of a scenario is defined in terms of the difficulty level of the safety maneuver. A scenario could be over-critical, critical, or under-critical. In over-critical scenarios, it is impossible to avoid a crash whereas, for under-critical scenarios, no action may be required to avoid a crash. The criticality of the scenario depends on various parameters e.g. speeds, distances, road/tire parameters, etc. In this paper, we propose a definition of criticality metric and identify the parameters such that a scenario becomes critical.
Technical Paper

Decomposition and Coordination to Support Tradespace Analysis for Ground Vehicle Systems

2022-03-29
2022-01-0370
Tradespace analysis is used to define the characteristics of the solution space for a vehicle design problem enabling decision-makers (DMs) to evaluate the risk-benefit posture of a vehicle design program. The tradespace itself is defined by a set of functional objectives defined by vehicle simulations and evaluating the performance of individual design solutions that are modeled by a set of input variables. Of special interest are efficient design solutions because their perfomance is Pareto meaning that none of their functional objective values can be improved without decaying the value of another objective. The functional objectives are derived from a combination of simulations to determine vehicle performance metrics and direct calculations using vehicle characteristics. The vehicle characteristics represent vendor specifications of vehicle subsystems representing various technologies.
Technical Paper

Development of New Turbulence Models and Computational Methods for Automotive Aerodynamics and Heat Transfer

2008-12-02
2008-01-2999
This paper is a review of turbulence models and computational methods that have been produced at Clemson University's Advanced Computational Research Laboratory. The goal of the turbulence model development has been to create physics-based models that are economically feasible and can be used in a competitive environment, where turnaround time is a critical factor. Given this goal, all of the work has been focused on Reynolds-Averaged Navier-Stokes (RANS) simulations in the eddy-viscosity framework with the majority of the turbulence models having three transport equations in addition to mass, momentum, and energy. Several areas have been targeted for improvement in turbulence modeling for complex flows such as those found in motorsports aerodynamics: the effects of streamline curvature and rotation on the turbulence field, laminar-turbulent transition, and separated shear layer rollup and breakdown.
Technical Paper

Effects of Tire and Vehicle Design Characteristics on Rollover of Tractor Semi-Trailers

2004-03-08
2004-01-1739
Understanding the effects of tire and vehicle properties on the rollover propensity of tractor semi-trailer trucks is essential. The major objective of the project described by this paper was to develop a simplified computational tool that can be used to understand and predict the effects of various tire characteristics and truck design parameters on rollover under steady cornering and non-tripped conditions. In particular, this tool may be used to help understand the basic mechanisms governing rollover propensity of trucks equipped with New Generation Wide Single tires as contrasted with conventional tires. Effects of tire flexibility, roll-compliant suspensions, fifth - wheel lash and nonlinear suspension characteristics are included in the model and are presented below. Design parameter data used as input to the model were obtained from Michelin Americas Research and Development Corporation.
Technical Paper

Effects of Tractor and Trailer Torsional Compliance and Fill Level of Tanker Trailers on Rollover Propensity During Steady Cornering

2005-11-01
2005-01-3518
Understanding the parameters which influence the tendency for a heavy truck to exhibit rollover is of paramount importance to the trucking industry. Multiple parameters influence the vehicle’s motion, and the ability to determine how each affects the vehicle as a system would be an indispensable tool for the design of such vehicles. To be able to perform such predictions and analysis, models and a computer simulation were created to allow the examination of changes in design parameters in such vehicles. The vehicle model was originally developed by Law [1] and presented in Law and Janajreh [2]. The model was extended further by Lawson [3, 4] to include (a) the effects of the torsional compliance of both the tractor and trailer, and (b) tanker trailers with various levels of liquid fill. In the present paper, both the tractor and trailer compliances were studied independently to determine their influences on the rollover stability of the vehicle.
Technical Paper

Flexible Fabrics with High Thermal Conductivity for Advanced Spacesuits

2006-07-17
2006-01-2236
This paper describes the effort and accomplishments for developing flexible fabrics with high thermal conductivity (FFHTC) for spacesuits to improve thermal performance, lower weight and reduce complexity. Commercial and additional space exploration applications that require substantial performance enhancements in removal and transport of heat away from equipment as well as from the human body can benefit from this technology. Improvements in thermal conductivity were achieved through the use of modified polymers containing thermally conductive additives. The objective of the FFHTC effort is to significantly improve the thermal conductivity of the liquid cooled ventilation garment by improving the thermal conductivity of the subcomponents (i.e., fabric and plastic tubes).
Journal Article

Formal Verification of Autonomous Vehicles: Bridging the Gap between Model-Based Design and Model Checking

2023-04-11
2023-01-0116
Formal verification plays an important role in proving the safety of autonomous vehicles (AV). It is crucial to find errors in the AV system model to ensure safety critical features are not compromised. Model checking is a formal verification method which checks if the finite state machine (FSM) model meets system requirements. These requirements can be expressed as linear Temporal logic (LTL) formulae to describe a sequence of states with linear Temporal properties to be satisfied. NuSMV is a dedicated software for performing model checking based on Temporal logic formulae on FSM models. However, NuSMV does not provide model-based design. On the other hand, Stateflow in MATLAB/SIMULINK is a powerful tool for designing the model and offers an interactive Graphical User Interface (GUI) for the user/verifier but is not as efficient as NuSMV in model checking.
Technical Paper

Improvement of Blind Spot Alert Detection by Elderly Drivers

2015-04-14
2015-01-1399
A common result of aging is a decline in peripheral vision. This study provides a preliminary feasibility analysis of an improved method for alerting drivers of oncoming traffic in blind-spots. Luminescence with an intuitive color-scheme is used as the primary stimulus to permeate a wider field of useful vision than that of existing technology in use today. This method was developed based on concepts of affordance-based design through its adaptation to address specific cognitive and visual acuity challenges of the elderly. The result is an improved, intuitive technique for hazard alert that shows significant improvement over existing technology for all age groups, not just the elderly.
Technical Paper

Investigation of Rollover, Lateral Handling, and Obstacle Avoidance Maneuvers of Tactical Vehicles

2006-10-31
2006-01-3569
Current military operations in Iraq and Afghanistan are unique because the battlefield can be described as a non-linear, asymmetrical environment. Units operate in zones that are susceptible to enemy contact from any direction at any time. The response to these issues has been the addition of add-on armor to HMMWV's and other tactical vehicles. The retro-fitting of armor to these vehicles has resulted in many accidents due to rollover and instability. The goal of this paper is to determine possible causes of the instability and rollover of up-armored tactical vehicles and to develop simulation tools that can analyze the steady-state and transient dynamics of the vehicles. Models and simulations include a steady-state rollover scenario, analysis of understeer gradient, and a transient handling analysis that uses models of both a human driver and a vehicle to analyze vehicle response to an obstacle avoidance maneuver.
Technical Paper

Optimization to Improve Lateral Stability of Tractor Semi-Trailers During Steady State Cornering

2004-10-26
2004-01-2690
Decreasing the propensity for rollover during steady state cornering of tractor semi-trailers is a key advantage to the trucking industry. This will be referred to as “increasing the lateral stability during steady state cornering” and may be accomplished by changes in design and loading variables which influence the behavior of a vehicle. To better understand the effects of such changes, a computer program was written to optimize certain design variables and thus maximize the lateral acceleration where an incipient loss of lateral stability occurs. The vehicle model used in the present investigation extends that developed by Law [1] and presented in Law and Janajreh [2]. The original model included the effects of tire flexibility, nonlinear roll-compliant suspensions, and fifth wheel lash. This model was modified to include (a) additional effects of displacement due to both lateral and vertical tire flexibility, and (b) provisions for determining “off-tracking”.
Technical Paper

Physiological Limits of Underpressure and Overpressure for Mechanical Counter Pressure Suits

2003-07-07
2003-01-2444
The first concept and early experiments of a mechanical counter pressure (MCP) spacesuit were published by Webb in the late 1960's. MCP provides an alternative approach to the conventional full pressure suit that bears some significant advantages, such as increased mobility, dexterity, and tactility. The presented ongoing research provides a thorough investigation of the physiological effect of mechanical counter pressure applied onto the human skin. In this study, we investigated local microcirculatory effects produced with negative and positive ambient pressure on the lower body as a preliminary study for a lower body garment. The data indicates that the positive pressure was less tolerable than negative pressure. Lower body negative and positive pressure cause various responses in skin blood flow due to not only blood shifts but also direct exposure to pressure differentials.
Technical Paper

Prediction of Human Actions in Assembly Process by a Spatial-Temporal End-to-End Learning Model

2019-04-02
2019-01-0509
It’s important to predict human actions in the industry assembly process. Foreseeing future actions before they happened is an essential part for flexible human-robot collaboration and crucial to safety issues. Vision-based human action prediction from videos provides intuitive and adequate knowledge for many complex applications. This problem can be interpreted as deducing the next action of people from a short video clip. The history information needs to be considered to learn these relations among time steps for predicting the future steps. However, it is difficult to extract the history information and use it to infer the future situation with traditional methods. In this scenario, a model is needed to handle the spatial and temporal details stored in the past human motions and construct the future action based on limited accessible human demonstrations.
Technical Paper

Traffic Safety Improvement through Evaluation of Driver Behavior – An Initial Step Towards Vehicle Assessment of Human Operators

2023-04-11
2023-01-0569
In the United States and worldwide, 38,824 and 1.35 million people were killed in vehicle crashes during 2020. These statistics are tragic and indicative of an on-going public health crisis centered on automobiles and other ground transportation solutions. Although the long-term US vehicle fatality rate is slowly declining, it continues to be elevated compared to European countries. The introduction of vehicle safety systems and re-designed roadways has improved survivability and driving environment, but driver behavior has not been fully addressed. A non-confrontational approach is the evaluation of driver behavior using onboard sensors and computer algorithms to determine the vehicle’s “mistrust” level of the given operator and the safety of the individual operating the vehicle. This is an inversion of the classic human-machine trust paradigm in which the human evaluates whether the machine can safely operate in an automated fashion.
X