Refine Your Search

Topic

Search Results

Viewing 1 to 14 of 14
Technical Paper

A Robust CFD Methodology for Physically Realistic and Economically Feasible Results in Racing - Part V: Exhaust-Valve Region Flow

2006-04-03
2006-01-1592
Part V of this five-part paper investigates the flow field and the total pressure loss mechanisms for three valve lifts in the exhaust region of a V8 racecar engine using the robust, systematic computational methodology described in Part I. The replica of the engine geometry includes a cylinder, detailed combustion chamber, exhaust valve, valve seat, port, and “exhaust pipe”. A set of fully-converged and grid-independent solutions for the steady, time-averaged (or RANS), non-linear Navier-Stokes equations are obtained using dense and high quality grids, involving 2.1∼3.0 finite volumes, and unusually strict convergence criteria. Turbulence closure is attained via the realizable k-ε (RKE) model used in conjunction with the non-equilibrium wall function near-wall treatment. The validation presented in Part I showed that flow rate results from the “blind simulations” agree well with the experimental measurements.
Technical Paper

A User Configurable Powertrain Controller with Open Software Management

2007-04-16
2007-01-1601
The emphasis on vehicle fuel economy and tailpipe emissions, coupled with a trend toward greater system functionally, has prompted automotive engineers to develop on-board control systems with increased requirements and complexity. Mainstream engine controllers regulate fuel, spark, and other subsystems using custom solutions that incorporate off-the-shelf hardware components. Although the digital processor core and the peripheral electronics may be similar, these controllers are targeted to fixed engine architectures which limit their flexibility across vehicle platforms. Moreover, additional software needs are emerging as electronics continue to permeate the ground transportation sector. Thus, automotive controllers will be required to assume increased responsibility while effectively communicating with distributed hardware modules.
Technical Paper

Analysis of a Split Injection Strategy to Enable High Load, High Compression Ratio Spark Ignition with Hydrous Ethanol

2023-10-31
2023-01-1616
High compression ratios are critical to increasing the efficiency of spark ignition engines, but the trend in downsized and down sped configurations has brought attention to the nominally low compression ratios used to avoid knock. Knock is an abnormal combustion event defined by the acoustic sound caused by end-gas auto-ignition ahead of the flame front. In order to avoid engine-damaging levels of knock, low compression ratios and retarded combustion phasing at high loads are used, both of which lower efficiency. Low carbon alternative fuels such as ethanol or water-based alcohol fuels combine strong chemical auto-ignition resistance with large charge cooling characteristics that can suppress knock and enable optimal combustion phasing, thus allowing an increase in the compression ratio.
Technical Paper

Autoignition Characterization of Wet Isopropanol-n-Butanol-Ethanol Blends for ACI

2021-09-05
2021-24-0044
In this work, two blends of isopropanol, n-butanol, and ethanol (IBE) that can be produced by metabolically engineered clostridium acetobutylicum are studied experimentally in advanced compression ignition (ACI). This is done to determine whether these fuel blends have the right fuel properties to enable thermally stratified compression ignition, a stratified ACI strategy that using the cooling potential of single stage ignition fuels to control the heat release process. The first microorganism, ATCC824, produces a blend of 34.5% isopropanol, 60.1% n-butanol, and 5.4% ethanol, by mass. The second microorganism, BKM19, produces a blend of 12.3% isopropanol, 54.0% n-butanol, and 33.7% ethanol, by mass. The sensitivity of both IBE blends to intake pressure, intake temperature, and cylinder energy content (fueling rate) is characterized and compared to that of its neat constituents. Both IBE blends behaved similarly with a reactivity level between that of ethanol and n-butanol.
Journal Article

Characterization of Flow Drill Screwdriving Process Parameters on Joint Quality

2014-09-16
2014-01-2241
A state of the art proprietary method for aluminum-to-aluminum joining in the automotive industry is Resistance Spot Welding. However, with spot welding (1) structural performance of the joint may be degraded through heat-affected zones created by the high temperature thermal joining process, (2) achieving the double-sided access necessary for the spot welding electrodes may limit design flexibility, and (3) variability with welds leads to production inconsistencies. Self-piercing rivets have been used before; however they require different rivet/die combinations depending on the material being joined, which adds to process complexity. In recent years the introductions of screw products that combine the technologies of friction drilling and thread forming have entered the market. These types of screw products do not have these access limitations as through-part connections are formed by one-sided access using a thermo-mechanical flow screwdriving process with minimal heat.
Journal Article

Chassis Dynamometer as a Development Platform for Vehicle Hardware In-the-Loop “VHiL”

2013-05-15
2013-01-9018
This manuscript provides a review of different types and categorization of the chassis dynamometer systems. The review classifies the chassis dynamometers based on the configuration, type of rollers and the application type. Additionally the manuscript discusses several application examples of the chassis dynamometer including: performance and endurance mileage accumulation tests, fuel efficiency and exhaust emissions, noise, vibration and harshness testing (NVH). Different types of the vehicle attachment system in the dynamometer cell and its influences on the driving force characteristics and the vehicle acoustic signature is also discussed. The text also highlights the impact of the use of the chassis dynamometer as a development platform and its impact on the development process. Examples of using chassis dynamometer as a development platform using Vehicle Hardware In-the-Loop (VHiL) approach including drivability assessment and transmission calibrations are presented.
Technical Paper

Experimental Analysis of a Multiple Radiator Cooling System with Computer Controlled Flow Rates

2020-04-14
2020-01-0944
The automotive cooling system configuration has remained fixed for many decades with a large radiator plus fan, coolant pump, and bypass valve. To reduce cooling system power consumption, the introduction of multiple computer-controlled heat exchangers may offer some benefits. A paradigm shift from a single large radiator, sized for maximum load, to n-small radiators with individual flow control valves should allow fine tuning of the heat rejection needs to minimize power. In this project, a series of experimental scenarios featuring two identical parallel radiators have been studied for low thermal load engine cooling (e.g., idling) in ground transportation applications. For high thermal load scenarios using two radiators, the fans required between 1120 - 3600 W to maintain the system about the coolant reference temperature of 85oC.
Technical Paper

Experimental Comparison of Diesel and Wet Ethanol on an Opposed-Piston Two Stroke (OP2S) Engine

2023-04-11
2023-01-0335
Renewable fuels, such as the alcohols, ammonia, and hydrogen, have a high autoignition resistance. Therefore, to enable these fuels in compression ignition, some modifications to existing engine architectures is required, including increasing compression ratio, adding insulation, and/or using hot internal residuals. The opposed-piston two-stroke (OP2S) engine architecture is unique in that, unlike conventional four-stroke engines, the OP2S can control the amount of trapped residuals over a wide range through its scavenging process. As such, the OP2S engine architecture is well suited to achieve compression ignition of high autoignition resistance fuels. In this work, compression ignition with wet ethanol 80 (80% ethanol, 20% water by mass) on a 3-cylinder OP2S engine is experimentally demonstrated. A load sweep is performed from idle to nearly full load of the engine, with comparisons made to diesel at each operating condition.
Technical Paper

Experimental Comparison of a Rotary Valvetrain on the Performance and Emissions of a Light Duty Spark Ignition Engine

2023-10-31
2023-01-1613
Rotary valve technology can provide increased flow area and higher discharge coefficients than conventional poppet valves for internal combustion engines. This increase in intake charging efficiency can improve the power density of four-stroke internal combustion engines, particularly at high engine speeds, where flow is choked through conventional poppet valves. In this work, the valvetrain of a light duty single cylinder spark ignition engine was replaced with a rotary valve train. The impact of this valvetrain conversion on performance and emissions was evaluated by comparing spark timing sweeps with lambda ranging from 0.8 to 1.1 at wide open throttle. The results indicated that the rotary valvetrain increased the amount of air trapped at intake valve closing and resulted in a significantly faster burn duration than the conventional valvetrain.
Technical Paper

Lazy Parts Indication Method: Application to Automotive Components

2011-04-12
2011-01-0428
A new approach to lightweight engineering of vehicles focuses on identifying and eliminating Lazy Parts through the application of the Lazy Parts Indication Method (LPIM). In this context, Lazy Parts are defined as components that have the potential for mass reduction for a number of reasons discussed in previous literature. The focus of this research is to apply the LPIM to an automotive component, identify potential mass savings, and redesign the component to address the laziness and begin to validate the LPIM as well at the estimated mass savings. A generator mounting bracket for a vehicle is analyzed using the LPIM and redesigned. The application of the LPIM to the generator mounting bracket predicted an estimated mass savings of 10% (0.32kg), while the actual redesign of the bracket revealed a 12% (0.38kg) mass savings.
Technical Paper

Physiological Limits of Underpressure and Overpressure for Mechanical Counter Pressure Suits

2003-07-07
2003-01-2444
The first concept and early experiments of a mechanical counter pressure (MCP) spacesuit were published by Webb in the late 1960's. MCP provides an alternative approach to the conventional full pressure suit that bears some significant advantages, such as increased mobility, dexterity, and tactility. The presented ongoing research provides a thorough investigation of the physiological effect of mechanical counter pressure applied onto the human skin. In this study, we investigated local microcirculatory effects produced with negative and positive ambient pressure on the lower body as a preliminary study for a lower body garment. The data indicates that the positive pressure was less tolerable than negative pressure. Lower body negative and positive pressure cause various responses in skin blood flow due to not only blood shifts but also direct exposure to pressure differentials.
Technical Paper

Smart Thermostat and Coolant Pump Control for Engine Thermal Management Systems

2003-03-03
2003-01-0272
The introduction of mechatronic components into thermal-mechanical systems provides an opportunity to apply real time control strategies for enhanced engine performance. The traditional automotive thermal management system contains the engine, thermostat, air cooled radiator, and centrifugal pump driven by the crankshaft belt. A servo-motor valve and pump may be inserted into the vehicle's heating/cooling system to regulate the coolant flow with the engine control unit. To study these dual actuators, a scale experimental cooling system has been investigated. This automotive inspired thermal system contains a heater, smart thermostat valve, radiator, and variable speed electric pump. A lumped parameter model has been developed to describe the system's behavioral response and establish the basis for temperature regulation. Real time control algorithms are introduced for the synchronous regulation of the valve and pump.
Technical Paper

Split Injection of High-Ethanol Content Fuels to Reduce Knock in Spark Ignition

2023-04-11
2023-01-0326
Spark ignition engines have low tailpipe criteria pollutants due to their stoichiometric operation and three-way catalysis and are highly controllable. However, one of their main drawbacks is that the compression ratio is low due to knock, which incurs an efficiency penalty. With a global push towards low-lifecycle-carbon renewable fuels, high-octane alternatives to gasoline such as ethanol are attractive options as fuels for spark ignition engines. Under premixed spark ignition operating conditions, ethanol can enable higher compression ratios than regular-grade gasoline due to its high octane number. The high cooling potential of high-ethanol content gasolines, like E85, or of ethanol-water blends, like hydrous ethanol, can be leveraged to further reduce knock and enable higher compression ratios as well as further downsizing and boosting to reduce frictional and throttling losses.
Journal Article

The Effects of Thick Thermal Barrier Coatings on Low-Temperature Combustion

2020-04-14
2020-01-0275
An experimental study was conducted on a Ricardo Hydra single-cylinder light-duty diesel research engine. Start of Injection (SOI) timing sweeps from -350 deg aTDC to -210 deg aTDC were performed on a total number of five pistons including two baseline metal pistons and three coated pistons to investigate the effects of thick thermal barrier coatings (TBCs) on the efficiency and emissions of low-temperature combustion (LTC). A fuel with a high latent heat of vaporization, wet ethanol, was chosen to eliminate the undesired effects of thick TBCs on volumetric efficiency. Additionally, the higher surface temperatures of the TBCs can be used to help vaporize the high heat of vaporization fuel and avoid excessive wall wetting. A specialized injector with a 60° included angle was used to target the fuel spray at the surface of the coated piston.
X