Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

A Scenario-Based Test Selection and Scoring Methodology for Inclusion in a Safety Case Framework for Automated Vehicles

2024-04-09
2024-01-2644
Effectively determining automated driving system (ADS)-equipped vehicle (AV) safety without relying on testing an infeasibly large number of driving scenarios is a challenge with wide recognition in industry and academia. The following paper builds on previous work by the Institute of Automated Mobility (IAM) and Science Foundation Arizona (SFAz), and proposes a test selection and scoring methodology (TSSM) as part of a safety case-based framework being developed by the SFAz to ensure the safety of AVs while addressing the scenario testing challenge. The TSSM is an AV verification and validation (V&V) process that relies, in part, on iterative, partially random generation of AV driving scenarios. These scenarios are generated using an operational design domain (ODD) and behavioral competency portfolio, which expresses the vehicle ODD and behavioral competencies in terms of quantifiable amounts or intensities of discrete components.
Technical Paper

Comprehensive Evaluation of Behavioral Competence of an Automated Vehicle Using the Driving Assessment (DA) Methodology

2024-04-09
2024-01-2642
With the development of vehicles equipped with automated driving systems, the need for systematic evaluation of AV performance has grown increasingly imperative. According to ISO 34502, one of the safety test objectives is to learn the minimum performance levels required for diverse scenarios. To address this need, this paper combines two essential methodologies - scenario-based testing procedures and scoring systems - to systematically evaluate the behavioral competence of AVs. In this study, we conduct comprehensive testing across diverse scenarios within a simulator environment following Mcity AV Driver Licensing Test procedure. These scenarios span several common real-world driving situations, including BV Cut-in, BV Lane Departure into VUT Path from Opposite Direction, BV Left Turn Across VUT Path, and BV Right Turn into VUT Path scenarios.
Technical Paper

Developing an Automated Vehicle Research Platform by Integrating Autoware with the DataSpeed Drive-By-Wire System

2024-04-09
2024-01-1981
Over the past decade, significant progress has been made in developing algorithms and improving hardware for automated driving. However, conducting research and deploying advanced algorithms on automated vehicles for testing and validation remains costly, especially for academia. This paper presents the efforts of our research team to integrate the newest version of the open-source Autoware software with the commercially available DataSpeed Drive-by-Wire (DBW) system, resulting in the creation of a versatile and robust automated vehicle research platform. Autoware, an open-source software stack based on the 2nd generation Robot Operating System (ROS2), has gained prominence in the automated vehicle research community for its comprehensive suite of perception, planning, and control modules. The DataSpeed DBW system directly communicates with the vehicle's CAN bus and provides precise vehicle control capabilities.
X