Refine Your Search

Topic

Author

Search Results

Technical Paper

A Look-Ahead Model Predictive Optimal Control Strategy of a Waste Heat Recovery-Organic Rankine Cycle for Automotive Application

2019-04-02
2019-01-1130
The Organic Rankine Cycle (ORC) has proven to be a promising technology for Waste Heat Recovery (WHR) systems in heavy duty diesel engine applications. However, due to the highly transient heat source, controlling the working fluid flow through the ORC system is a challenge for real time application. With advanced knowledge of the heat source dynamics, there is potential to enhance power optimization from the WHR system through predictive optimal control. This paper proposes a look-ahead control strategy to explore the potential of increased power recovery from a simulated WHR system. In the look-ahead control, the future vehicle speed is predicted utilizing road topography and V2V connectivity. The forecasted vehicle speed is utilized to predict the engine speed and torque, which facilitates estimation of the engine exhaust conditions used in the ORC control model.
Journal Article

An Electric Motor Thermal Bus Cooling System for Vehicle Propulsion - Design and Test

2020-04-14
2020-01-0745
Automotive and truck manufacturers are introducing electric propulsion systems into their ground vehicles to reduce fossil fuel consumption and harmful tailpipe emissions. The mobility shift to electric motors requires a compact thermal management system that can accommodate heat dissipation demands with minimum energy consumption in a confined space. An innovative cooling system design, emphasizing passive cooling methods coupled with a small liquid system, using a thermal bus architecture has been explored. The laboratory experiment features an emulated electric motor interfaced to a thermal cradle and multiple heat rejection pathways to evaluate the transfer of generated heat to the ambient surroundings. The thermal response of passive (e.g., carbon fiber, high thermal conductivity material, thermosyphon) and active cooling systems are investigated for two operating scenarios.
Journal Article

An Engine Thermal Management System Design for Military Ground Vehicle - Simultaneous Fan, Pump and Valve Control

2016-04-05
2016-01-0310
The pursuit of greater fuel economy in internal combustion engines requires the optimization of all subsystems including thermal management. The reduction of cooling power required by the electromechanical coolant pump, radiator fan(s), and thermal valve demands real time control strategies. To maintain the engine temperature within prescribed limits for different operating conditions, the continual estimation of the heat removal needs and the synergistic operation of the cooling system components must be accomplished. The reductions in thermal management power consumption can be achieved by avoiding unnecessary overcooling efforts which are often accommodated by extreme thermostat valve positions. In this paper, an optimal nonlinear controller for a military M-ATV engine cooling system will be presented. The prescribed engine coolant temperature will be tracked while minimizing the pump, fan(s), and valve power usage.
Technical Paper

An Integrated Energy Management and Control Framework for Hybrid Military Vehicles based on Situational Awareness and Dynamic Reconfiguration

2022-03-29
2022-01-0349
As powertrain hybridization technologies are becoming popular, their application for heavy-duty military vehicles is drawing attention. An intelligent design and operation of the energy management system (EMS) is important to ensure that hybrid military vehicles can operate efficiently, simultaneously maximize fuel economy and minimize monetary cost, while successfully completing mission tasks. Furthermore, an integrated EMS framework is vital to ensure a functional vehicle power system (VPS) to survive through critical missions in a highly stochastic environment, when needed. This calls for situational awareness and dynamic system reconfiguration capabilities on-board of the military vehicle. This paper presents a new energy management and control (EMC) framework based on holistic situational awareness (SA) and dynamic reconfiguration of the VPS.
Journal Article

Chassis Dynamometer as a Development Platform for Vehicle Hardware In-the-Loop “VHiL”

2013-05-15
2013-01-9018
This manuscript provides a review of different types and categorization of the chassis dynamometer systems. The review classifies the chassis dynamometers based on the configuration, type of rollers and the application type. Additionally the manuscript discusses several application examples of the chassis dynamometer including: performance and endurance mileage accumulation tests, fuel efficiency and exhaust emissions, noise, vibration and harshness testing (NVH). Different types of the vehicle attachment system in the dynamometer cell and its influences on the driving force characteristics and the vehicle acoustic signature is also discussed. The text also highlights the impact of the use of the chassis dynamometer as a development platform and its impact on the development process. Examples of using chassis dynamometer as a development platform using Vehicle Hardware In-the-Loop (VHiL) approach including drivability assessment and transmission calibrations are presented.
Technical Paper

Clarity of View: An AHP Multi-Factor Evaluation Framework for Driver Awareness Systems in Heavy Vehicles

2015-04-14
2015-01-1704
Several emerging technologies hold great promise to improve the 360-degree awareness of the heavy vehicle driver. However, current industry-standard evaluation methods do not measure all the comprehensive factors contributing to the overall effectiveness of such systems. As a result, industry is challenged to evaluate new technologies in a way that is objective and allows the comparison of different systems in a consistent manner. This research aims to explore the methods currently in use, identify relevant factors not presently incorporated in standard procedures, and recommend best practices to accomplish an overall measurement system that can quantify performance beyond simply the field of view of a driver visibility system. We introduce a new metric, “Clarity of View,” that incorporates several important factors for visibility systems including: gap acceptance accuracy, image detection time, and distortion.
Technical Paper

Computational Fluid Dynamics Model Creation and Simulation for Class 8 Tractor-Trailers

2023-08-18
2023-01-5051
The Environmental Protection Agency (EPA), in partnership with Research Triangle Institute (RTI International) and Auto Research Center (ARC-Indy), have created digital geometries of commercially available heavy-duty tractor-trailers. The goal of this effort was to improve the agency’s understanding of aerodynamic modeling of modern trucks and to provide opportunities for more consistent engagement on computational fluid dynamics (CFD) analyses. Sleeper and day cab tractors with aerodynamic features and a 53-foot box trailer with aerodynamic technology options were scanned to create high-resolution geometries. The scanning process consisted of a combination of physical scanning with a handheld device, along with digital post-processing. The completed truck geometries are compatible with most commercial CFD software and are publicly available for modeling and analyses.
Journal Article

Control Allocation for Multi-Axle Hub Motor Driven Land Vehicles

2016-04-05
2016-01-1670
This paper outlines a real-time hierarchical control allocation algorithm for multi-axle land vehicles with independent hub motor wheel drives. At the top level, the driver’s input such as pedal position or steering wheel position are interpreted into desired global state responses based on a reference model. Then, a locally linearized rigid body model is used to design a linear quadratic regulator that generates the desired global control efforts, i.e., the total tire forces and moments required track the desired state responses. At the lower level, an optimal control allocation algorithm coordinates the motor torques in such a manner that the forces generated at tire-road contacts produce the desired global control efforts under some physical constraints of the actuation and the tire/wheel dynamics. The performance of the proposed control system design is verified via simulation analysis of a 3-axle heavy vehicle with independent hub-motor drives.
Journal Article

Cycle-Average Heavy-Duty Engine Test Procedure for Full Vehicle Certification - Numerical Algorithms for Interpreting Cycle-Average Fuel Maps

2016-09-27
2016-01-8018
In June of 2015, the Environmental Protection Agency and the National Highway Traffic Safety Administration issued a Notice of Proposed Rulemaking to further reduce greenhouse gas emissions and improve the fuel efficiency of medium- and heavy-duty vehicles. The agencies proposed that vehicle manufacturers would certify vehicles to the standards by using the agencies’ Greenhouse Gas Emission Model (GEM). The agencies also proposed a steady-state engine test procedure for generating GEM inputs to represent the vehicle’s engine performance. In the proposal the agencies also requested comment on an alternative engine test procedure, the details of which were published in two separate 2015 SAE Technical Papers [1, 2]. As an alternative to the proposed steady-state engine test procedure, these papers presented a cycle-average test procedure.
Journal Article

Design and Demonstration of EPA's Integrated Drive Module for Commercial Series Hydraulic Hybrid Trucks and Buses

2015-09-29
2015-01-2850
The United States Environmental Protection Agency's (EPA) National Center for Advanced Technology (NCAT), located at its National Vehicle and Fuel Emissions Laboratory in Ann Arbor, Michigan, has been a global leader in development and demonstration of low-greenhouse gas emitting, highly fuel efficient series hydraulic hybrid drivetrain technologies. Advances in these exciting new technologies have stimulated industry to begin manufacturing hydraulic hybrids for both commercial truck and non-road equipment markets. Development activities are continuing for other markets, including light-duty vehicles. Given the commercial emergence of these low-greenhouse gas emitting series hydraulic hybrids, EPA has passed the leadership for further development to industry.
Journal Article

Determination of the PEMS Measurement Allowance for PM Emissions Regulated Under the Heavy-Duty Diesel Engine In-Use Testing Program

2012-04-16
2012-01-1250
This paper summarizes the Heavy-Duty In-Use Testing (HDUIT) measurement allowance program for Particulate Matter Portable Emissions Measurement Systems (PM-PEMS). The measurement allowance program was designed to determine the incremental error between PM measurements using the laboratory constant volume sampler (CVS) filter method and in-use testing with a PEMS. Two independent PM-PEMS that included the Sensors Portable Particulate Measuring Device (PPMD) and the Horiba Transient Particulate Matter (TRPM) were used in this program. An additional instrument that included the AVL Micro Soot Sensor (MSS) was used in conjunction with the Sensors PPMD to be considered a PM-PEMS. A series of steady state and transient tests were performed in a 40 CFR Part 1065 compliant engine dynamometer test cell using a 2007 on-highway heavy-duty diesel engine to quantify the accuracy and precision of the PEMS in comparison with the CVS filter-based method.
Technical Paper

Effects of Tractor and Trailer Torsional Compliance and Fill Level of Tanker Trailers on Rollover Propensity During Steady Cornering

2005-11-01
2005-01-3518
Understanding the parameters which influence the tendency for a heavy truck to exhibit rollover is of paramount importance to the trucking industry. Multiple parameters influence the vehicle’s motion, and the ability to determine how each affects the vehicle as a system would be an indispensable tool for the design of such vehicles. To be able to perform such predictions and analysis, models and a computer simulation were created to allow the examination of changes in design parameters in such vehicles. The vehicle model was originally developed by Law [1] and presented in Law and Janajreh [2]. The model was extended further by Lawson [3, 4] to include (a) the effects of the torsional compliance of both the tractor and trailer, and (b) tanker trailers with various levels of liquid fill. In the present paper, both the tractor and trailer compliances were studied independently to determine their influences on the rollover stability of the vehicle.
Journal Article

Emissions Performance and In-Use Durability of Retrofit After-Treatment Technologies

2014-09-30
2014-01-2347
In-use testing of diesel emission control technologies is an integral component of EPA's verification program. Device manufacturers are required to complete in-use testing once 500 units have been sold. Additionally, EPA conducts test programs on randomly selected retrofit devices from installations completed with grants by the National Clean Diesel Campaign. In this test program, EPA identified and recovered a variety of retrofit devices, including diesel particulate filters (DPFs) and diesel oxidation catalysts (DOCs), installed on heavy-duty diesel vehicles (on-highway and nonroad). All of the devices were tested at Southwest Research Institute in San Antonio, Texas. This study's goal was to evaluate the durability, defined here as emissions performance as a function of time, of retrofit technologies aged in real-world applications. A variety of operating and emissions criteria were measured to characterize the overall performance of the retrofit devices on an engine dynamometer.
Technical Paper

Energy-Aware Predictive Control for the Battery Thermal Management System of an Autonomous Off-Road Vehicle

2024-04-09
2024-01-2665
Off-road vehicles are increasingly adopting hybrid and electric powertrains for improved mobility, range, and energy efficiency. However, their cooling systems consume a significant amount of energy, affecting the vehicle’s operating range. This study develops a predictive controller for the battery thermal management system in an autonomous electric tracked off-road vehicle. By analyzing the system dynamics, the controller determines the optimal preview horizon and controller timestep. Sensitivity analysis is conducted to evaluate temperature tracking and energy consumption. Compared to an optimal controller without preview, the predictive controller reduces energy consumption by 55%. Additionally, a relationship between cooling system energy consumption and battery size is established. The impact of the preview horizon on energy consumption is examined, and a tradeoff between computational cost and optimality is identified.
Technical Paper

Engine-in-the-Loop Study of a Hierarchical Predictive Online Controller for Connected and Automated Heavy-Duty Vehicles

2020-04-14
2020-01-0592
This paper presents a cohesive set of engine-in-the-loop (EIL) studies examining the use of hierarchical model-predictive control for fuel consumption minimization in a class-8 heavy-duty truck intended to be equipped with Level-1 connectivity/automation. This work is motivated by the potential of connected/automated vehicle technologies to reduce fuel consumption in both urban/suburban and highway scenarios. The authors begin by presenting a hierarchical model-predictive control scheme that optimizes multiple chassis and powertrain functionalities for fuel consumption. These functionalities include: vehicle routing, arrival/departure at signalized intersections, speed trajectory optimization, platooning, predictive optimal gear shifting, and engine demand torque shaping. The primary optimization goal is to minimize fuel consumption, but the hierarchical controller explicitly accounts for other key objectives/constraints, including operator comfort and safe inter-vehicle spacing.
Technical Paper

Evaluation of Coastdown Analysis Techniques to Determine Aerodynamic Drag of Heavy-Duty Vehicles

2016-09-27
2016-01-8151
To investigate the feasibility of various aerodynamic test procedures for the Phase 2 Greenhouse Gas (GHG) Regulations for heavy-duty vehicles in the United States, the US Environmental Protection Agency conducted, through Southwest Research Institute (SwRI), coastdown testing of several heavy-duty tractors matched to a conventional 53-foot dry-van trailer. Three vehicle configurations were tested, two of which included common trailer drag-reduction technologies. Air speed was measured onboard the vehicle, and wind conditions were measured using a weather station placed along the road side. Tests were performed on a rural road in Texas. One vehicle configuration was tested over several days to evaluate day-to-day repeatability and the influence of changing wind conditions. Data on external sources of road forces, such as grade and speed dependence of tire rolling resistance, were collected separately and incorporated into the analysis.
Technical Paper

Evaluation of Cylinder Deactivation on a Class 8 Truck over Light Load Cycles

2020-04-14
2020-01-0800
Selective Catalytic Reduction (SCR) systems provide excellent NOX control for diesel engines provided the exhaust aftertreatment inlet temperature remains at 200° C or higher. Since diesel engines run lean, extended light load operation typically causes exhaust temperatures to fall below 200° C and SCR conversion efficiency diminishes. Heated urea dosing systems are being developed to allow dosing below 190° C. However, catalyst face plugging remains a concern. Close coupled SCR systems and lower temperature formulation of SCR systems are also being developed, which add additional expense. Current strategies of post fuel injection and retarded injection timing increases fuel consumption. One viable keep-warm strategy examined in this paper is cylinder deactivation (CDA) which can increase exhaust temperature and reduce fuel consumption.
Technical Paper

Fuel Effects Study with Small (<19kW) Spark-Ignited Off-Road Equipment Engines

2013-10-14
2013-01-2517
This paper covers work performed for the California Air Resources Board and the United States Environmental Protection Agency by Southwest Research Institute. Emission measurements were made on nine types of off-road equipment with small (<19kW) spark-ignited engines including handheld and non-handheld equipment utilizing oxygenated and non-oxygenated fuels. Emission data was produced to augment ARB and EPA's off-road emission inventory. It was intended that this program provide ARB and EPA with emission test results they require for atmospheric modeling. The paper describes the equipment and engines tested, test procedures, emissions sampling methodologies, and emissions analytical techniques. Fuels used in the study are described, along with the emissions characterization results. The fuel effects on exhaust emissions and operation due to ethanol content and fuel components is compared.
Journal Article

Fuel-Savings from Aerodynamic Efficiency Improvements for Combination Tractor-Trailers Relative to Vehicle Speed

2016-09-27
2016-01-8133
Commercial, class-8 tractor-trailers were tested to develop a relationship between vehicle speed and fuel savings associated with trailer aerodynamic technologies representative of typical long-haul freight applications. This research seeks to address a concern that many long-distance U.S. freight companies hold that, as vehicle speed is reduced, the fuel savings benefits of aerodynamic technologies are not realized. In this paper, the reductions in fuel consumption were measured using the SAE J1231 test method and thru-engine fueling rates recorded from the vehicle’s electronic data stream. Constant speed testing was conducted on road at different speeds and corresponding testing was conducted on track to confirm results. Data was collected at four (4) vehicle speeds: 35, 45, 55, and 62 miles per hour. Two different trailer aerodynamic configurations were evaluated relative to a baseline tractor trailer.
Journal Article

HCCI Engine Application on a Hydraulic Hybrid Bus

2012-09-10
2012-01-1631
After initial trials on Homogeneous Charge Compression Ignition (HCCI) engine design and tests pursuing feedback control to avoid misfire and knocking over wide transient operation ranges, Engineers at the US Environmental Protection Agency's (EPA) National Vehicle Fuel and Emissions Laboratory identified the crucial engine state variable, MRPR (Maximum Rate of Pressure Rise) and successfully controlled a 1.9L HCCI engine in pure HCCI mode [1]. This engine was used to power a hybrid Ford F-150 truck which successfully ran FTP75 tests in 2004. In subsequent research, efforts have been focused on practical issues such as improving transient rate, system simplification for controllability and packaging, application of production grade in-cylinder pressure sensors, cold start, idling and calibration for ambient conditions as well as oxidation catalyst applications for better turbine efficiency and HC and CO emissions control.
X