Refine Your Search

Topic

Author

Search Results

Technical Paper

A Modular Simulink Model for Hybrid Electric Vehicles

1996-08-01
961659
In comparison to the state of knowledge of standard internal combustion vehicles, there is relatively little known on how to best implement component sub-systems and best integrate these systems together to create a hybrid electric vehicle.
Technical Paper

Application of Model Fuels to Engine Simulation

2007-07-23
2007-01-1843
To address the growing need for detailed chemistry in engine simulations, new software tools and validated data sets are being developed under an industry-funded consortium involving members from the automotive and fuels industry. The results described here include systematic comparison and validation of detailed chemistry models using a wide range of fundamental experimental data, and the development of software tools that support the use of detailed mechanisms in engineering simulations. Such tools include the automated reduction of reaction mechanisms for targeted simulation conditions. Selected results are presented and discussed.
Technical Paper

Bending Fatigue Crack Characterization and Fracture Toughness of Gas Carburized SAE 4320 Steel

1992-02-01
920534
Crack initiation and propagation in an SAE 4320 steel gas carburized to a 1.0 mm case depth was examined in specimens subjected to bending fatigue. Cellulose acetate replicas of incrementally loaded specimens showed that small, intergranular cracks were initiated during static loading to stress levels just above the endurance limit. The intergranular cracks arrest and serve as initiation sites for semi-elliptical, transgranular fatigue crack propagation. The maximum depth of stable crack propagation was between 0.17 and 0.23 mm, a depth which corresponds to the maximum hardness of the carburized case. Three equations which provide approximations to the stress distribution in the fatigue specimens were used to calculate KIC for the carburized case with values of maximum applied stress and measured stable crack geometry.
Technical Paper

Bending Fatigue Performance of Carburized 4320 Steel

1993-03-01
930963
The bending fatigue performance of four heats of carburized, commercially-produced SAE 4320 steel was evaluated. Simulated gear tooth in bending (SGTB) cantilever beam specimens from each heat were identically carburized and fatigue tested in the direct quenched condition after carburizing. The microstructure and fracture surfaces of all specimens were characterized with light and electron microscopy. The four direct quenched sets of specimens performed similarly in low cycle fatigue. Endurance limits among the direct quenched specimens ranged between 1100 and 1170 MPa (160 and 170 ksi) and intergranular cracking dominated fatigue crack initiation. An additional set of specimens from one of the heats was reheated after carburizing. The fatigue performance of the reheated specimens was superior to that of the direct quenched specimens in both the low and high cycle regions. The effects of inclusion content, microstructure, and residual stresses on fatigue performance are discussed.
Technical Paper

Bending Fatigue Performance of Gas- and Plasma-Carburized Steels

1999-03-01
1999-01-0602
This study evaluated the bending fatigue performance of a modified SAE 4320 steel as a function of carburizing technique. S-N curves and endurance limits were established by fatigue testing modified Brugger-type specimens that are designed to simulate a single gear tooth. Fractured specimens were examined by light and electron microscopy to determine crack initiation sites, establish the extent of stable crack propagation, and analyze surface oxide types and distributions. Test results show that plasma-carburizing boosted the endurance limit of an oxidation-susceptible gear steel from 1100 MPa to 1375 MPa. Fatigue endurance limits in excess of 1400 MPa had previously been achieved in gas-carburized SAE 4320 steels by reheat treatments and reductions in high-oxidation potential elements. The level of improvement observed in this study suggests that any of these advanced processing techniques can allow significant size reductions and weight savings in automotive transmission gears.
Technical Paper

Carbon and Sulfur Effects on Performance of Microalloyed Spindle Forgings

1993-03-01
930966
Five heats of vanadium-microalloyed steel with carbon contents from 0.29% to 0.40% and sulfur contents from 0.031% to 0.110% were forged into automotive spindles and air cooled. Three of the steels were continuously cast whereas the other two were ingot cast. The forged spindles were subjected to microstructural analysis, mechanical property testing, full component testing and machinability testing. The microstructures of the five steels consisted of pearlite and ferrite which nucleated on prior austenite grain boundaries and predominantly on intragranularly dispersed sulfide inclusions of the resulfurized grades. Ultimate tensile strengths and room temperature Charpy V-notch impact toughness values were relatively insensitive to processing and compositional variations. The room temperature tensile and room-temperature impact properties ranged from 820 MPa to 1000 MPa (120 to 145 ksi) and from 13 Joules to 19 Joules (10 to 14 ft-lbs), respectively, for the various steels.
Technical Paper

Comparison of Single Gear Tooth and Cantilever Beam Bending Fatigue Testing of Carburized Steel

1995-02-01
950212
The bending fatigue performance of gears, cantilever beam specimens, and notched-axial specimens were evaluated and compared. Specimens were machined from a modified SAE-4118 steel, gas-carburized, direct-quenched and tempered. Bending fatigue specimens were characterized by light metallography to determine microstructure and prior austenite grain size, x-ray analysis for residual stress and retained austenite measurements, and scanning electron microscopy to evaluate fatigue crack initiation, propagation and overload. The case and core microstructures, prior austenite grain sizes and case hardness profiles from the various types of specimens were similar. Endurance limits were determined to be about 950 MPa for both the cantilever beam and notched-axial fatigue specimens, and 1310 MPa for the single gear tooth specimens.
Technical Paper

Design and Fabrication of a Formula SAE Undertray

2019-10-22
2019-01-2596
Aerodynamic packages can provide a significant performance benefit to Formula SAE cars, but design and development of a full aerodynamics package can be time-consuming and expensive. An undertray system can provide significant aerodynamic benefits at a lower cost than a full aerodynamics package with front and rear wings. To properly design and test an undertray, a robust program of computational fluid dynamics (CFD) analysis and verification is needed. CFD analysis can be challenging, especially for large external flow problems like that of a full car. Due to this difficulty, careful meshing and setup of simulations is necessary to ensure accurate results. Much like analysis, fabrication of an aerodynamics package for a Formula SAE car is difficult. Fiberglass and carbon fiber layup processes are commonly used, but are prone to a variety of issues, and can be costly and time-consuming. Therefore, a thorough layup schedule and a careful manufacturing process is necessary.
Technical Paper

Diesel and CNG Transit Bus Emissions Characterization by Two Chassis Dynamometer Laboratories: Results and Issues

1999-05-03
1999-01-1469
Emissions of six 32 passenger transit buses were characterized using one of the West Virginia University (WVU) Transportable Heavy Duty Emissions Testing Laboratories, and the fixed base chassis dynamometer at the Colorado Institute for Fuels and High Altitude Engine Research (CIFER). Three of the buses were powered with 1997 ISB 5.9 liter Cummins diesel engines, and three were powered with the 1997 5.9 liter Cummins natural gas (NG) counterpart. The NG engines were LEV certified. Objectives were to contrast the emissions performance of the diesel and NG units, and to compare results from the two laboratories. Both laboratories found that oxides of nitrogen and particulate matter (PM) emissions were substantially lower for the natural gas buses than for the diesel buses. It was observed that by varying the rapidity of pedal movement during accelerations in the Central Business District cycle (CBD), CO and PM emissions from the diesel buses could be varied by a factor of three or more.
Technical Paper

Effect of Fuel Composition and Altitude on Regulated Emissions from a Lean-Burn, Closed Loop Controlled Natural Gas Engine

1997-05-01
971707
Natural gas presents several challenges to engine manufacturers for use as a heavy-duty, lean burn engine fuel. This is because natural gas can vary in composition and the variation is large enough to produce significant changes in the stoichiometry of the fuel and its octane number. Similarly, operation at high altitude can present challenges. The most significant effect of altitude is lower barometric pressure, typically 630 mm Hg at 1600 m compared to a sea level value of 760 mm. This can lower turbocharger boost at low speeds leading to mixtures richer than desired. The purpose of this test program was to determine the effect of natural gas composition and altitude on regulated emissions and performance of a Cummins B5.9G engine. The engine is a lean-burn, closed loop control, spark ignited, dedicated natural gas engine. For fuel composition testing the engine was operating at approximately 1600 m (5,280 ft) above sea level.
Technical Paper

Effect of Thermal Treatments and Carbon Potential on Bending Fatigue Performance of SAE 4320 Gear Steel

1999-03-01
1999-01-0603
This project investigated the effect of carburizing carbon-potential and thermal history on the bending fatigue performance of carburized SAE 4320 gear steel. Modified-Brugger cantilever bending fatigue specimens were carburized at carbon potentials of 0.60, 0.85, 1.05, and 1.25 wt. pct. carbon, and were either quenched and tempered or quenched, tempered, reheated, quenched, and tempered. The reheat treatment was designed to lower the solute carbon content in the case through the formation of transition carbides and refine the prior austenite grain size. Specimens were fatigue tested in a tension/tension cycle with a minimum to maximum stress ratio of 0.1. The bending fatigue results were correlated with case and core microstructures, hardness profiles, residual stress profiles, retained austenite profiles, and component distortion.
Journal Article

Effects of Chemical Composition, Heat Treatment, and Microstructure in Splittable Forged Steel Connecting Rods

2015-04-14
2015-01-0522
Fracture split forged steel connecting rods are utilized in many new high performance automotive engines to increase durability. Higher strength levels are needed as the power density increases. Fracture splitting without plastic deformation is necessary for manufacturability. Metallurgical design is a key for achieving the required performance levels. Several medium carbon steels containing 0.07 wt pct P, 0.06 wt pct S and various amounts of Mn, Si, V, and N were produced by vacuum induction melting laboratory heats and hot working the cast ingots into plates. The plates were cooled at varying rates to simulate typical cooling methods after forging. Microstructures were generally ferrite and pearlite as evaluated by light optical and scanning electron microscopy. Mechanical properties were determined by standard tensile tests, high strain rate notched tensile tests, and Charpy V-notch impact tests to assess “splittability”.
Technical Paper

Effects of Constituent Properties on Performance Improvement of a Quenching and Partitioning Steel

2014-04-01
2014-01-0812
In this paper, a two-dimensional microstructure-based finite element modeling method is adopted to investigate the effects of material parameters of the constituent phases on the macroscopic tensile behavior of Q&P steel and to perform a computational material design approach for performance improvement. For this purpose, a model Q&P steel is first produced and various experiments are then performed to characterize the model steel. Actual microstructure-based model is generated based on the information from EBSD, SEM and nano-indentation test, and the material properties for the constituent phases in the model are determined based on the initial constituent properties from HEXRD test and the subsequent calibration of model predictions to tensile test results. The influence of various material parameters of the constituents on the macroscopic behavior is then investigated.
Technical Paper

Effects of Subzero Treatments on the Bending Fatigue Performance of Carburized SAE-4320 and SAE-9310 Steels

1996-02-01
960313
The effects of subzero treatments on the bending fatigue performance of carburized gear steels were investigated by cantilever bending fatigue testing. Specimens were machined from SAE-4320 and SAE-9310 bar stock steel, gas-carburized, quenched, tempered at 175°C, subzero cooled to -73°C and -196°C, and tempered at 175°C. Bending fatigue specimens were characterized by light metallography to determine microstructure and prior austenite grain size, x-ray diffraction for residual stress and retained austenite contents, microhardness testing, and scanning electron microscopy to evaluate fatigue crack initiation, propagation and overload. Refrigeration treatments caused additional transformation of retained austenite and increased surface hardness and compressive residual stresses. Bending fatigue endurance limits for the SAE-4320 specimens were determined to be 1310 MPa for the as-carburized condition, 1170 MPa for the -73°C condition, and 1280 MPa for the -196°C condition.
Technical Paper

Effects of Testing Temperature on the Fatigue Behavior of Carburized Steel

2005-04-11
2005-01-0986
The effects of elevated testing temperature on the fatigue behavior of carburized steel were evaluated by testing modified Brügger bending fatigue specimens at room temperature, 90 °C and 150 °C. SAE 4023, SAE 4320, and SAE 9310 steel were studied to assess the influence of alloy content and stability of retained austenite. Fatigue samples were gas-carburized and tested in air at 30 Hz with a stress ratio of 0.1. An infrared spot lamp was used to heat samples to 90 °C (150 °F) or 150 °C (302 °F) during testing. S-N curves were developed for the room temperature baseline tests as well as elevated temperature tests. The endurance limits determined are as follows: SAE 4023-RT (1170 MPa), SAE 4023-90°C (1140 MPa), SAE 4320-RT (1210 MPa), SAE 4320-90°C (1280 MPa), SAE 9310-RT (1380 MPa), SAE 9310-90°C (1240 MPa).
Technical Paper

Examination of Pitting Fatigue in Carburized Steels with Controlled Retained Austenite Fractions

2006-04-03
2006-01-0896
The effects of several variables on pitting fatigue life of carburized steels were analyzed using a geared roller test machine (GRTM). The material variables that were primarily used to influence retained austenite include aim surface carbon concentration (0.8 % and 0.95 %), alloy (SAE 4320 and a modified SAE 4122), and cold treatment (performed on one material condition per alloy). Testing variables included contact stress in addition to a variation in lambda ratio (oil film thickness/surface roughness), arising from variation in roughness among the machined surfaces. Test results are presented, and differences in performance are considered in terms of material and testing variables. A primary observation from these results is an improvement in contact fatigue resistance apparently arising from cold-treatment and the associated reduction of retained austenite at the surface.
Journal Article

Expanding the Experimental Capabilities of the Ignition Quality Tester for Autoigniting Fuels

2010-04-12
2010-01-0741
This paper reports the development of new fuel ignition quality and combustion experiments performed using the Ignition Quality Tester (IQT). Prior SAE papers (961182, 971636, 1999-01-3591, and 2001-01-3527) documented the development of the IQT constant volume combustion chamber experimental apparatus to measure ignition qualities of diesel-type fuels. The ASTM International test method D6890 was developed around the IQT device to allow the rapid determination of derived cetane number (DCN). Interest in chemical kinetic models for the ignition of diesel and biodiesel model compounds is increasing to support the development of advanced engines and fuels. However, rigorous experimental validation of these kinetic models has been limited for a variety of reasons. Shock tubes and rapid compression machines are typically limited to premixed gas-phase studies, for example.
Technical Paper

Fatigue of Microalloyed Bar Steels

2000-03-06
2000-01-0615
The fatigue behavior of five microalloyed steels, processed with hardnesses between 25-28 HRC containing microstructures ranging from precipitation-hardened ferrite-pearlite to bainite, were evaluated in both low cycle (strain controlled) and high cycle (stress controlled fatigue. The vanadium-bearing steels included, 15R30V, 1522 MoVTi, 1522 MoVTiS, 1534 MoVTi, and 1534 MoVTiSi. Conventional quench and tempered 4140 steel was used as a reference. Low cycle fatigue (LCF) data for all steels were similar. Subtle microstructural-dependent differences in the high-strain amplitude region of the LCF curves were attributed to the effects of retained austenite, present in some of the non-traditional bainitic steels. In high cycle fatigue, all steels exhibited similar properties, except for the ferrite-pearlite steel (15R30V) which exhibited the lowest endurance limit, an observation which was attributed to crack nucleation in coarse-grained ferrite.
Technical Paper

Hydrogen Embrittlement Susceptibility of Case Hardened Steel Fasteners

2018-04-03
2018-01-1240
This work establishes the relationship between core hardness, case hardness, and case depth on susceptibility to hydrogen embrittlement of case hardened steel fasteners. Such fasteners have a high surface hardness in order to create their own threads in a mating hole, and are commonly used to attach bracketry and sheet metal in automotive applications. While case hardened fasteners have been studied previously, there are currently no processing guidelines supported by quantitative data for fastener standards. Through sustained load embrittlement testing techniques, the susceptibility of case hardened steel tapping screws to internal and environmental hydrogen embrittlement is examined. Further characterization of the fastener samples through microhardness testing, microstructure review, and fracture surface examination allows the investigation of susceptibility thresholds. It is shown that core hardness is the primary consideration for susceptibility.
Technical Paper

In-Use Emissions from Natural Gas Fueled Heavy-Duty Vehicles

1999-05-03
1999-01-1507
The objective of the work described here is to test the performance of closed-loop controlled, heavy-duty CNG engines in-use, on fuels of different methane content; and to compare their performance with similar diesel vehicles. Performance is measured in terms of pollutant emissions, fuel economy, and driveability. To achieve this objective, three buses powered by closed-loop controlled, dedicated natural gas engines were tested on the heavy-duty chassis dynamometer facility at the Colorado Institute for Fuels and High Altitude Engine Research (CIFER). Emissions of regulated pollutants (CO, NOx, PM, and THC or NMHC), as well as emissions of alde-hydes for some vehicles, are reported. Two fuels were employed: a high methane fuel (90%) and a low methane fuel (85%). It was found that the NOx, CO, and PM emissions for a given cycle and vehicle are essentially constant for different methane content fuels.
X