Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Continuous Improvement Efforts in Wire Bonding

2002-03-04
2002-01-0894
Concerns with stripping and soldering copper magnet wire in ignition coils and other related products have led to the investigation of an alternative product and process design, microjoining. This paper describes the initial development occurring during the improvement phase of a Six Sigma project. The use of microjoining with a folded over welding tab terminal design coupled with a parallel gap welding process is developed as a suitable method for joining a tin plated brass terminals to the 0.65mm magnet wire without prior removal of the polyesterimide over-coated polyamideimide insulation.
Technical Paper

Six Sigma Methodologies in Ignition Coil Manufacturing Using Experimental Design - Improve Step

2002-03-04
2002-01-0899
Quality issues in magnet wire stripping and soldering have led to continuous improvement efforts in ignition coil manufacturing using Six Sigma methodologies. This effort has resulted in the investigation of an alternative product and process design, microjoining. This paper describes the continuation of development occurring during the improvement phase of a Six Sigma project. The confirmation of the results is accomplished through the use of experimental design, response surface methodologies, mathematical modeling and optimization of the process. Nonlinear design of experiments have been used to confirm a breakthrough microjoining process developed that is an alternative to soldering. The statistical methods used to develop the process build on the current documented research efforts.
Technical Paper

Six Sigma Methodologies in Microjoining - Improve Step

2002-03-04
2002-01-0900
A current general need within Six Sigma methodologies is to utilize statistical methods including experimental design in the confirmation of new processes and their parameters. This is typically done in the improve step of the DMAIC process. This need is even more evident in microjoining (small scale resistance welding) due to the number and complexity of the process variables. This paper outlines the improve step of a Six Sigma project in which statistical methods are applied to a microjoining process. These statistical methods include linear experimental design, regression analysis with linear transformation and mathematical modeling. The paper documents the methodology used to establish process parameters in microjoining of an electrical lead frame design.
X