Refine Your Search

Topic

Search Results

Technical Paper

Aerodynamics of Open Wheel Racing Car in Pitching Position

2018-04-03
2018-01-0729
Formula One (F1) racing cars are often running at high-speed with the pitching angle changing frequently due to road conditions. These pitching angle changes result in changes to the car’s aerodynamic characteristics that will directly affect handling stability and other performance factors including safety. This paper takes a F1 racing car as the model; the influence of the change of pitching angle on aerodynamic drag force and lift force are investigated. CFD code-PowerFLOW based LBM is used to simulate the aerodynamic characteristics with different pitching angles. The distribution of aerodynamic coefficients, velocity and pressure in the flow field are obtained; and the differences between different pitching angles were analyzed. The results show that as the pitching angle increases, the drag force increases and the lift force decreases. The down-force of the car is mainly supplied by the front wing and the rear wing.
Technical Paper

Aeroelastic Response and Structural Improvement for Heavy-Duty Truck Cab Deflectors

2019-01-14
2019-01-5004
Numerical simulations on the fluid-structure interaction were conducted using commercial software STAR-CCM+ and ABAQUS. The aeroelastic responses of a deflector under several different working conditions were simulated utilizing finite volume and finite element methods to investigate the aeroelastic problem of automotive deflectors. Results showed that the structural response of a top deflector is minimal under the influence of aerodynamics given its large structural stiffness. The size of the top deflector was optimised by using thickness as a variable. The volume and quality of the top deflector were significantly reduced, and its lightweight performance was improved to satisfy the stiffness performance requirement. The vibration of a side deflector structure was mainly induced by the turbulence on the structure surface. The amplitude of vibration was small and the vibration gradually converged in a few seconds without obvious regularity.
Journal Article

Automotive Brake Squeal Simulation and Optimization

2016-04-05
2016-01-1298
This work carries out complex modal analyses and optimizations to resolve an 1800 Hz front brake squeal issue encountered in a vehicle program development phase. The stability theory of complex modes for brake squeal simulation is briefly explained. A brake system finite element model is constructed, and the model is validated by the measurement in accordance with the SAE 2521 procedure. The key parameters for evaluating the stability of the brake system complex modes are determined. The modal contributions of relevant components to unstable modes are analyzed and ranked. Finally, in order to resolve the squeal issue, the design improvements of rotor, caliper and pad are proposed and numerical simulations are carried out. The obtained results demonstrate that the optimized rotor and pad design can alleviate the squeal issue significantly while the optimized clipper design could essentially eliminate the squeal issue.
Journal Article

Experimental Studies on Viscoelasticity of Film Materials in Laminated Glass Sheets

2015-04-14
2015-01-0709
Polyvinyl butyral (PVB) film and SentryGlas® Plus (SGP) film have been widely used in automotive windshield and architecture curtain serving as protective interlayer materials. Viscoelasticity is the unique property of such film materials, which can contribute to improving impact resistance and energy absorbing characteristics of laminated glass. In this study, the uniaxial tensile creep and stress relaxation tests are conducted to investigate the viscoelasticity of PVB and SGP films used in laminated glass. Firstly, tensile creep and stress relaxation tests of PVB film (0.76mm) and SGP film with three thickness (0.89mm, 1.14mm and 1.52mm) are conducted using Instron universal testing machine to obtain creep and stress relaxation curves. Afterwards, both viscoelastic models (Burgers model, Maxwell-Weichert model) and empirical equations (Findley power law, Kohlrausch equation) are applied to simulate the creep and stress relaxation results.
Technical Paper

Head Protection Characteristics of Windshield During Pedestrian-Vehicle Accident

2011-04-12
2011-01-0082
The windshield is one of the most critical vehicle components in terms of pedestrian safety; however, it has not been thoroughly and systematically investigated through combined experimental and theoretical analysis. Firstly, this paper carries out quasi-static experiments on Material Testing System (MTS) and dynamic experiments on Split Hopkinson Pressure Bar (SHPB) and new tests data are obtained. Results indicate that Polyvinyl butyral (PVB)-laminated glass behaves nonlinearly and rate-dependently under various strain rates, from 1x10-⁵s-₁~6x10₃ s-₁. Thus, a constitutive model covering all strain rates is proposed to describe the constitutive behavior of PVB-laminated glass and it fits well with the experimental data. Further, the constitutive relation is embedded into the 3D finite element model of windshield. With the definition of four governing factors and two evaluation indicators, the head protection characteristics of windshield are numerically studied.
Technical Paper

High-Precision Autonomous Parking Localization System based on Multi-Sensor Fusion

2024-04-09
2024-01-2843
This paper addresses the issues of long-term signal loss in localization and cumulative drift in SLAM-based online mapping and localization in autonomous valet parking scenarios. A GPS, INS, and SLAM fusion localization framework is proposed, enabling centimeter-level localization with wide scene adaptability at multiple scales. The framework leverages the coupling of LiDAR and Inertial Measurement Unit (IMU) to create a point cloud map within the parking environment. The IMU pre-integration information is used to provide rough pose estimation for point cloud frames, and distortion correction, line and plane feature extraction are performed for pose estimation. The map is optimized and aligned with a global coordinate system during the mapping process, while a visual Bag-of-Words model is built to remove dynamic features.
Technical Paper

Impact of Sunroof Deflector on Interior Sound Quality

2015-06-15
2015-01-2324
When a sunroof opens to let in fresh air while driving, there might be several noise issues associated with it. The most common and painful one is the wind throb issue, which is nevertheless largely resolved by implementing a sufficiently high wind deflector along the front edge of the sunroof. However, with the wind throb suppressed, other sound quality issues might emerge. The most notable one is the hissing noise issue, which becomes increasingly objectionable with the increase of vehicle speed. This work looks into the impact of sunroof deflector on interior sound quality with the consideration of wind throb, hissing noise and booming noise in terms of psychoacoustic attributes that could be felt subjectively. The goal is to achieve a better understanding of the sound quality associated with the sunroof deflector design, and inspire a balanced design, potentially targeting the most NVH demanding customers in the premium vehicle segment.
Journal Article

Influencing Factors of Contact Force Distribution in Pedestrian Upper Legform Impact with Vehicle Front-End

2012-04-16
2012-01-0272
Pedestrian upper leg impact protection is a challenging requirement in the Euro NCAP assessment. In upper legform to bonnet leading edge tests, the legform impact force, the legform intrusion and the injury parameters (impact force and bending moment measured on the upper legform) are highly related to design of vehicle front-end styling and structure, as well as clearance underneath bonnet leading edge. In the course of impact, the contact area variation has significant influence on the stress distribution and consequently the force and the bending moment on the upper legform. Using finite element simulations of upper legform impact with a typical sedan, the deformation of the legform and the vehicle structure, and the variation of the contact force distribution are characterized and analyzed.
Technical Paper

Internal Pressure Characteristics when Evaluating Dynamic Door Blow Out Deflection

2015-06-15
2015-01-2327
Wind noise is one of the most influential NVH attributes that impact customer sensation of vehicle interior quietness. Among many factors that influence wind noise performance, the amount of dynamic door deflection under the pressure load due to fast movement of a vehicle plays a key roll. Excessive deflection could potentially lead to loss of sealing contact, causing aspiration leakage, which creates an effectual path through which the exterior aerodynamically induced noise propagates into the vehicle cabin. The dynamic door deflection can be predicted using CFD and CAE approaches which, in addition to modeling the structure correctly, require a correct pressure loading composed of external and internal pressure distributions. The determination of external pressure distributions can be fulfilled fairly straightforward by using commercial CFD codes such as Fluent, Star CCM+, Powerflow and others.
Technical Paper

Lane Detection and Pixel-Level Tracking for Autonomous Vehicles

2022-03-29
2022-01-0077
Lane detection and tracking play a key role in autonomous driving, not only in the LKA System but help estimate the pose of the vehicle. While there has been significant development in recent years, traditional outdoor SLAM algorithms still struggle to provide reliable information in challenging dynamic environments such as lack of roadside landscape or surrounding vehicles at almost the same speed or on the road in the woods. On the structured road, lane markings as static semantic features may provide a stable landmark assist in robust localization. As most of the current lane detection work mainly on separated images ignoring the relationship between adjacent frames, we propose a pixel-level lane tracking method for autonomous vehicles. In this paper, we introduce a deep network to detect and track lane features. The network has two parallel branches. One branch detects the lane position, while the other extracts the point description on a pixel level.
Technical Paper

Liquid Stream in the Rotary Valve of the Hydraulic Power Steering Gear

2007-10-30
2007-01-4237
Generally, noise will occur during steering with the hydraulic power steering system (hereinafter HPS). The noise producing in the rotary valve takes up a big proportion of the total one. To study the noise in the control valve, 2-D meshes of the flow field between the sleeve and the rotor were set up and a general CFD code-Fluent was used to analyze the flow inside the valve. The areas where the noise may be occurred were shown and some suggestions to silence the noise were given.
Technical Paper

Multi-Objective Optimization Design of Hybrid Material Bumper for Pedestrian Protection and Crashworthiness Design

2020-04-14
2020-01-0201
In vehicle accident, the bumper beam generally requires high stiffness for sufficient survival space for occupants while it may cause serious pedestrian lower extremity injuries. The aim of this study is to promote an aluminum-steel hybrid material double-hat bumper to meet the comprehensive requirements. The hybrid bumper is designed to improve the frontal crash and pedestrian protection performances in collision accidents. Finite element (FE) models of the hybrid bumper was built, validated, and integrated into an automotive model. The Fixed Deformable Barrier (FDB) and Transport Research Laboratory (TRL) legform model were used to obtain the vehicle crashworthiness and pedestrian lower leg injury indicators. Numerical results showed that the hybrid bumper had a great potential for crashworthiness performance and pedestrian protection characteristics. Based on this, a multi-objective optimization design (MOD) was performed to search the optimal geometric parameters.
Technical Paper

Multi-Objective Optimization of Interior Noise of an Automotive Body Based on Different Surrogate Models and NSGA-II

2018-04-03
2018-01-0146
This paper studies a multi-objective optimization design of interior noise for an automotive body. An acoustic-structure coupled model with materials and properties was established to predict the interior noise based on a passenger car. Moreover, three kinds of approximation models related damping thickness and the root mean square of the driver’s ear sound pressure level were established through Latin hypercube method and the corresponding experiments. The prediction accuracy was analyzed and compared for the approximate response surface model, Kriging model and Radial Basis Function neural network model. On this basis, multi-objective optimization of the vehicle interior noise was conducted by using NSGA-II. According to the optimization results, the damping composite structure was applied on the car body structure. Then, the comparison of sound pressure level response at driver’s ear location before and after optimization was performed at speed of 60 km/h on a smooth road.
Technical Paper

Optimization of Bus Body Based on Vehicle Interior Vibration

2012-04-16
2012-01-0221
In order to solve the abnormal vibration of a light bus, order tracking analysis of finite element simulation and road test was made to identify the vibration source, finding that the rotation angular frequency of the wheels and the first two natural frequency of the body structure overlaps, resonance occurring which lead to increased vibration. To stagger the first two natural frequency and excitation frequency of the body, thickness of sheet metal and skeleton of the body-in-white were chosen as the design variables, rise of the first two natural frequency of the body-in-white as the optimization objective, optimal design and sensitivity analysis of the body-in-white was carried out with the modal analysis theory. Combining with the modal sensitivity and mass sensitivity of sheet metal and skeleton, the optimum design was achieved and tests analysis was conducted.
Technical Paper

Research on Roll Vibration Characteristics of a Truck's Front Suspension

2015-04-14
2015-01-0635
For the roll vibration problem of a Truck, a 4-DOF roll vibration model of its front suspension system was built. According to dynamics theory, the complex modal vibration modes of the model were all obtained. At the same time, the frequency response functions of frame roll angle acceleration, the relative dynamic load of wheel and the suspension dynamic deflection were respectively presented. Then their characteristics were respectively researched. In the process of characteristic analysis, a new system parameter was proposed, which is the space ratio of the space between suspensions of left and right sides and the wheel track of the front axle (space ratio in short). At last, the influence of system parameters on the vibration transmission property was also reserached, which included the natural frequency of the frame, the damping ratio, the stiffness ratio, the mass ratio, the rotational inertia ratio and the space ratio.
Journal Article

Research on Temperature and Strain Rate Dependent Viscoelastic Response of Polyvinyl Butaral Film

2016-04-05
2016-01-0519
The mechanical behavior of polyvinyl butyral (PVB) film plays an important role in windshield crashworthiness and pedestrian protection and should be depth study. In this article, the uniaxial tension tests of PVB film at various strain rates (0.001 s-1, 0.01 s-1, 0.1 s-1, 1 s-1) and temperatures (-10°C, 0°C, 10°C, 23°C, 40°C, 55°C, 70°C) are conducted to investigate its mechanical behavior. Then, temperature and strain rate dependent viscoelastic characteristics of PVB are systematically studied. The results show that PVB is a kind of temperature and strain rate sensitive thermal viscoelastic material. Temperature increase and strain rate decrease have the same influence on mechanical properties of PVB. Besides, the mechanical characteristics of PVB change non-linearly with temperature and strain rate. Finally, two thermal viscoelastic constitutive model (ZWT model and DSGZ model) are suggested to describe the tension behavior of PVB film at various strain rates and temperatures.
Journal Article

Semi-Active Vibration Control of Landing Gear Using Magneto-Rhelological Dampers

2011-10-18
2011-01-2583
Magneto-rhelological(MR) dampers are devices that use rheological fluids to modify the mechanical properties of fluid absorber. The mechanical simplicity, high dynamic range, large force capacity, lower power requirements, robustness and safe manner of operation have made MR dampers attractive devices for semi-active real-time control in civil, aerospace and automotive applications. Landing gear is one of the most essential components of the aircraft, which plays an extreme important role in preventing the airframe from vibration and excessive impact forces, improving passenger comfortable characteristics and increasing aircraft flight safety. In this paper, the semi-active system used in landing gear damping controller design, simulation, and the vibration test-bed are discussed and researched. The MR dampers employed in landing gear system were designed, manufactured and characterized as available semi-active actuators.
Technical Paper

Simulation and Optimization of a Low Frequency Vibration Issue for Commercial Truck

2016-04-05
2016-01-0474
A low frequency vibration issue around 3.2 Hz occurs during a commercial heavy truck program development process, and it is linked to extremely uncomfortable driving and riding experiences. This work focuses on an analytical effort to resolve the issue by first building a full vehicle MBS (multi-body-system) model, and then carrying out vibration response analyses. The model validation is performed by using full vehicle testing in terms of structural modes and frequency response characteristics. In order to resolve the issue which is excited by tire non-uniformity, the influence of the cab suspension, frame modes, front leaf spring system and rear tandem suspension is analyzed. The root cause of the issue is found to be the poor isolation of the rear tandem suspension system. The analytical optimization effort establishes the resolution measure for the issue.
Technical Paper

Steering Angle Safety Control for Redundant Steering System Considering Motor Winding’s Various Faults

2024-04-09
2024-01-2520
Reliable and safe Redundant Steering System (RSS) equipped with Dual-Winding Permanent Magnet Synchronous Motor (DW-PMSM) is considered an ideal actuator for future autonomous vehicle chassis. The built-in DW-PMSM of the RSS is required to identify various winding’s faults such as disconnection, open circuit, and grounding. When achieving redundant control through winding switching, it is necessary to suppress speed fluctuations during the process of winding switching to ensure angle control precision. In this paper, a steering angle safety control for RSS considering motor winding’s faults is proposed. First, we analyze working principle of RSS. Corresponding steering system model and fault model of DW-PMSM have been established. Next, we design the fault diagnosis and fault tolerance strategy of RSS.
Journal Article

Study on Engine Hood with Negative Poisson's Ratio Architected Composites Based on Pedestrian Protection

2017-03-28
2017-01-0368
The conventional hood with single material and stiffener structural form conceals some limitations on pedestrian protection and lightweight, not satisfying the requirements of structural strength, pedestrian protection and lightweight contradictory with each other at the same time. In this paper, a novel type hood is proposed to develop sandwich structure using architected cellular material with negative Poisson's ratio (NPR) configuration based on the decoupling thought of structural strength and energy absorption. Core-layer aluminum alloy material with NPR is used to meet the requirement of impact energy absorption, inner and outer skin using carbon fiber is selected to achieve high structural stiffness needed. This paper starts from the relations between geometric parameters of core-layer architected cellular material and mechanical properties, on this basis, the optimal geometric parameters can be expected using the multiobjective optimization method.
X