Refine Your Search

Topic

Author

Search Results

Technical Paper

A New Electric Powertrain for Light Trucks: Indoor Testing and Advanced Simulation

2014-04-01
2014-01-1977
A new electric powertrain and axle for light/medium trucks is presented. The indoor testing and the simulation of the dynamic behavior are performed. The powertrain and axle has been produced by Streparava and tested at the Laboratory for the Safety of Transport of the Politecnico di Milano. The tests were aimed at defining the multi-physics perfomance of the powertrain and axle (efficiency, acceleration and braking, temperature and NVH). The whole system for indoor tests was composed by the powertrain and axle (electric motor, driveline, suspensions, wheels) and by the test rig (drums, driveline and electric motor). The (driving) axle was positioned on a couple of drums, and the drums provided the proper torques to the wheels to reproduce acceleration and braking. Additionally a cleat fixed on one drum excited the vibration of the suspensions and allowed assessing NVH performance. The simulations were based on a special co-simulation between 1D-AMESIM and VIRTUAL.LAB.
Technical Paper

A New Mathematical-Physical 2D Tire Model for Handling Optimization on a Vehicle

1999-03-01
1999-01-0789
This paper introduces and discusses a new 2D physical model which has been developed and validated in order to study and optimize the handling behavior of the tire. It can be divided into two parts, the structural model and the contact area model. The parameters, that are function of the vertical load, are identified or calculated by comparison with the results provided by 3D finite element models. The input data for the identification procedure consist of a set of frequency responses performed on the finite element model. A second set of simulations on the 3D model of the tread pattern gives the characteristics of the contact model. Once built the 2D model it is easy to carry out both steady state and transient analysis. The steady state analysis returns the cornering carpet, in terms of lateral force and self-aligning moment as function of the cornering angle. The transient analysis allows the evaluation of the relaxation length and dynamic characteristics.
Technical Paper

Accelerating Accurate Urea/SCR Film Temperature Simulations to Time-Scales Needed for Urea Deposit Predictions

2019-04-02
2019-01-0982
Urea water solution-based Selective Catalytic Reduction (SCR) of NOx emissions from vehicular diesel engines is now widely used world-wide to meet strict health and environmental protection regulations. While urea-based SCR is proven effective, urea-derived deposits often form near injectors, on mixers and pipes, and on the SCR catalyst face. Further understanding of these deposit-formation processes is needed to design aftertreatment system hardware and control systems capable of avoiding severe urea-derived deposits. Computational Fluid Dynamics (CFD) is widely used in SCR aftertreatment design. Film formation, movement, solid wall cooling and deposit initiation/growth time-scales are in the range of minutes to hours, but traditional CFD simulations take too long to reach these time-scales. Here, we propose and demonstrate the frozen flow approach for pulsed sprays and conjugate heat transfer to reduce computation time while maintaining accuracy of key physics.
Technical Paper

An Analytical Energy-budget Model for Diesel Droplet Impingement on an Inclined Solid Wall

2020-04-14
2020-01-1158
The study of spray-wall interaction is of great importance to understand the dynamics that occur during fuel impingement onto the chamber wall or piston surfaces in internal combustion engines. It is found that the maximum spreading length of an impinged droplet can provide a quantitative estimation of heat transfer and energy transformation for spray-wall interaction. Furthermore, it influences the air-fuel mixing and hydrocarbon and particle emissions at combusting conditions. In this paper, an analytical model of a single diesel droplet impinging on the wall with different inclined angles (α) is developed in terms of βm (dimensionless maximum spreading length, the ratio of maximum spreading length to initial droplet diameter) to understand the detailed impinging dynamic process.
Technical Paper

An Innovative 4WD Controlled Powertrain for High Performance Vehicle

2007-04-16
2007-01-0926
The potentialities shown by controlled differentials is making the automotive industry to explore this field. While VDC systems can only guarantee a safe behaviour at limit, a controlled differential can also increase the handling performance. The system derives from a RWD driveline with a semi-active differential, to which has been added a controlled wet clutch that directly connects the engine to the front axle. This device allows to distribute the drive torque between the two axles. It can be easily understood that in this device the torque distribution doesn't depend only from the central clutch action, but also from the engaged gear. Because of this particular layout this system can't work in the whole gear because thermal problems due to kinematical reasons. So the central clutch controller has to consider the gear position too.
Technical Paper

Analysis of Performance Results from FutureTruck 2001

2002-03-04
2002-01-1209
The 2001 FutureTruck competition involved 15 universities from across North America that were invited to apply a wide range of advanced technologies to improve energy efficiency and reduce greenhouse gas impact while producing near-zero regulated exhaust emissions in a 2000 Chevrolet Suburban. The modified vehicles designated as FutureTrucks demonstrated improvements in greenhouse gas emissions, tailpipe emissions, and over-the-road fuel economy compared with the stock vehicle on which they were based. The technologies represented in the vehicles included ICE-engines and fuel cell hybrid electric vehicle propulsion systems, a range of conventional and alternative fuels, advanced exhaust emissions controls, and light weighting technologies.
Technical Paper

Analytical and Experimental Handling Performance of Ultra-Efficient Lightweight Vehicles

2023-08-28
2023-24-0135
The rising environmental awareness has led to a growing interest in electric and lightweight vehicles. Four-wheeled Ultra-Efficient Lightweight Vehicles (UELVs) have the potential to improve the quality of urban life, reduce environmental impact and make efficient use of land. However, the safety of these vehicles in terms of dynamic behaviour needs to be better understood. This paper aims to provide a quantitative assessment of the handling behaviour of UELVs. An analytical single-track model and a numerical simulation by VI-CarRealTime are analysed to evaluate the dynamic performance of a UELV compared to a city car. This analysis shows that the lightweight vehicle has a higher readiness (i.e. lower reaction time to yaw rate) for step steering and lower steering effort (i.e. higher steady-state value). Experimental analysis through real-time driving sessions on the Dynamic Driving Simulator assesses vehicle responses and subjective perception for different manoeuvres.
Technical Paper

Application of a CFD Methodology for the Design of PEM Fuel Cell at the Channel Scale

2024-04-09
2024-01-2186
Polymer electrolyte membrane (PEM) fuel cells will play a crucial role in the decarbonization of the transport sector, in particular for heavy duty applications. However, performance and durability of PEMFC stacks is still a concern especially when operated under high power density conditions, as required in order to improve the compactness and to reduce the cost of the system. In this context, the optimization of the geometry of hydrogen and air distributors represents a key factor to improve the distribution of the reactants on the active surface, in order to guarantee a proper water management and avoiding membrane dehydration.
Journal Article

Assessing the Importance of Radiative Heat Transfer for ECN Spray A Using the Transported PDF Method

2016-04-05
2016-01-0857
The importance of radiative heat transfer on the combustion and soot formation characteristics under nominal ECN Spray A conditions has been studied numerically. The liquid n-dodecane fuel is injected with 1500 bar fuel pressure into the constant volume chamber at different ambient conditions. Radiation from both gas-phase as well as soot particles has been included and assumed as gray. Three different solvers for the radiative transfer equation have been employed: the discrete ordinate method, the spherical-harmonics method and the optically thin assumption. The radiation models have been coupled with the transported probability density function method for turbulent reactive flows and soot, where unresolved turbulent fluctuations in temperature and composition are included and therefore capturing turbulence-chemistry-soot-radiation interactions. Results show that the gas-phase (mostly CO2 ad H2O species) has a higher contribution to the net radiation heat transfer compared to soot.
Journal Article

Assessment of Multiple Injection Strategies in a Direct-Injection Hydrogen Research Engine

2009-06-15
2009-01-1920
Hydrogen is widely considered a promising fuel for future transportation applications for both, internal combustion engines and fuel cells. Due to their advanced stage of development and immediate availability hydrogen combustion engines could act as a bridging technology towards a wide-spread hydrogen infrastructure. Although fuel cell vehicles are expected to surpass hydrogen combustion engine vehicles in terms of efficiency, the difference in efficiency might not be as significant as widely anticipated [1]. Hydrogen combustion engines have been shown capable of achieving efficiencies of up to 45 % [2]. One of the remaining challenges is the reduction of nitric oxide emissions while achieving peak engine efficiencies. This paper summarizes research work performed on a single-cylinder hydrogen direct injection engine at Argonne National Laboratory.
Technical Paper

Autothermal Reforming Catalyst Development for Fuel Cell Applications

2002-06-03
2002-01-1884
Süd-Chemie Inc. is producing and supplying an autothermal reforming (ATR) catalyst that was developed by Argonne National Laboratory (ANL) for reforming hydrocarbon fuels to generate H2 for automotive fuel cell systems. The catalyst is derived from solid oxide fuel cell technology, where a transition metal is supported on an oxide-ion-conducting substrate, such as ceria or zirconia, that is doped with an un-reducible oxide, such as gadolinium or samarium, to improve its oxide ion conductivity and to increase the number of surface oxygen ion vacancies. The catalyst has been shown to produce an H2-rich gas (reformate) from a wide variety of hydrocarbon fuels, including methane, natural gas, and commercial-grade gasolines and diesels with high selectivity. Platinum was the transition metal used in the first generation of the ANL catalyst.
Journal Article

Brake Based Torque Vectoring for Sport Vehicle Performance Improvement

2008-04-14
2008-01-0596
The most common automotive drivelines transmit the engine torque to the driven axle through a differential. Semi-active versions of this device ([4], [5], [6]) have been recently conceived to improve vehicle handling at limit and under particular conditions; these differentials are based on the structural scheme of the passive one but they try to manipulate the vehicle dynamics by controlling the distribution of the driving torque on the wheels of the same axle thus generating a yaw moment. Unfortunately a semi-active differential is not able to perform a complete yaw control since the torque can only be transferred from the faster wheel to the slower one; on the other hand, active differentials ([11], [12], [13]) allow to generate the most appropriate yaw moment controlling both the amount of transferred torque and its direction.
Technical Paper

Breaking Down Technology Barriers for Advanced Vehicles: The Graduate Automotive Technology Education (GATE) Program

2000-04-02
2000-01-1595
The U.S. Department of Energy (DOE) Office of Advanced Automotive Technologies (OAAT), in partnership with industry, is developing transportation technologies that will improve the energy efficiency of our transportation system. Most OAAT programs are focused exclusively on technology development. However, the twin goals of developing innovative technologies and transferring them to industry led OAAT to realize the growing need for people trained in non-traditional, emerging technologies. The Graduate Automotive Technology Education (GATE) program combines graduate-level education with technology development and transfer by training a new generation of automotive engineers in critical multi-disciplinary technologies, by fostering cooperative research in those technologies, and by transferring those technologies directly to industrial organizations.
Journal Article

CFD Assessment of an After-Treatment System Equipped with Electrical Heating for the Reduction of the Catalyst Light-Off Time

2023-04-11
2023-01-0366
The reduction of the catalyst light-off time at the engine cold start represents a key factor for the pollutant emissions control from vehicles tested on homologation cycles and real drive conditions. The adoption of heating strategies to increase the temperature of the catalytic substrate in the early phase of the engine start is regarded as a promising solution. The present study focuses on the application of electrical heated catalyst (EHC) in an after-treatment line for a spark-ignition gasoline engine. The analysis is carried out by means of an advanced CFD framework, which includes the modeling of catalytic reactions in the substrates and accounts for the thermal evolution of all the components included in the after-treatment system.
Technical Paper

CFD Investigation of the Impact of Electrical Heating on the Light-off of a Diesel Oxidation Catalyst

2018-04-03
2018-01-0961
In the last years, as a response to the more and more restrictive emission legislation, new devices (SRC, DOC, NOx-trap, DPF) have been progressively introduced as standard components of modern after-treatment system for Diesel engines. In addition, the adoption of electrical heating is nowadays regarded with interest as an effective solution to promote the light-off of the catalyst at low temperature, especially at the start-up of the engine and during the low load operation of the engine typical of the urban drive. In this work, a state-of-the-art 48 V electrical heated catalyst is considered, in order to investigate its effect in increasing the abatement efficiency of a standard DOC. The electrical heating device considered is based on a metallic support, arranged in a spiral layout, and it is heated by the Joule effect due to the passage of the electrical current.
Technical Paper

CFD Modeling of Compact Heat Exchangers for I.C. Engine Oil Cooling

2019-09-09
2019-24-0179
This work describes the development of a computational model for the CFD simulation of compact heat exchangers applied for the oil cooling in internal combustion engines. Among the different cooler types, the present modeling effort will be focused on liquid-cooled solutions based on offset strip fins turbulators. The design of this type of coolers represents an issue of extreme concern, which requires a compromise between different objectives: high compactness, low pressure drop, high heat-transfer efficiency. In this work, a computational framework for the CFD simulation of compact oil-to-liquid heat exchangers, including offset-strip fins as heat transfer enhancer, has been developed. The main problem is represented by the need of considering different scales in the simulation, ranging from the characteristic size of the turbulator geometry (tipically μm - mm) to the full scale of the overall device (typically cm - dm).
Journal Article

CFD-Guided Heavy Duty Mixing-Controlled Combustion System Optimization with a Gasoline-Like Fuel

2017-03-28
2017-01-0550
A computational fluid dynamics (CFD) guided combustion system optimization was conducted for a heavy-duty compression-ignition engine with a gasoline-like fuel that has an anti-knock index (AKI) of 58. The primary goal was to design an optimized combustion system utilizing the high volatility and low sooting tendency of the fuel for improved fuel efficiency with minimal hardware modifications to the engine. The CFD model predictions were first validated against experimental results generated using the stock engine hardware. A comprehensive design of experiments (DoE) study was performed at different operating conditions on a world-leading supercomputer, MIRA at Argonne National Laboratory, to accelerate the development of an optimized fuel-efficiency focused design while maintaining the engine-out NOx and soot emissions levels of the baseline production engine.
Technical Paper

Combustion Modeling in Heavy Duty Diesel Engines Using Detailed Chemistry and Turbulence-Chemistry Interaction

2015-04-14
2015-01-0375
Diesel combustion is a very complex process, involving a reacting, turbulent and multi-phase flow. Furthermore, heavy duty engines operate mainly at medium and high loads, where injection durations are very long and cylinder pressure is high. Within such context, proper CFD tools are necessary to predict mixing controlled combustion, heat transfer and, eventually, flame wall interaction which might result from long injection durations and high injection pressures. In particular, detailed chemistry seems to be necessary to estimate correctly ignition under a wide range of operating conditions and formation of rich combustion products which might lead to soot formation. This work is dedicated to the identification of suitable methodologies to predict combustion in heavy-duty diesel engines using detailed chemistry.
Technical Paper

Comparing Apples to Apples: Well-to-Wheel Analysis of Current ICE and Fuel Cell Vehicle Technologies

2004-03-08
2004-01-1015
Because of their high efficiency and low emissions, fuel-cell vehicles are undergoing extensive research and development. When considering the introduction of advanced vehicles, a complete well-to-wheel evaluation must be performed to determine the potential impact of a technology on carbon dioxide and Green House Gases (GHGs) emissions. Several modeling tools developed by Argonne National Laboratory (ANL) were used to evaluate the impact of advanced powertrain configurations. The Powertrain System Analysis Toolkit (PSAT) transient vehicle simulation software was used with a variety of fuel cell system models derived from the General Computational Toolkit (GCtool) for pump-to-wheel (PTW) analysis, and GREET (Green house gases, Regulated Emissions and Energy use in Transportation) was used for well-to-pump (WTP) analysis. This paper compares advanced propulsion technologies on a well-to-wheel energy basis by using current technology for conventional, hybrid and fuel cell technologies.
Journal Article

Control Analysis under Different Driving Conditions for Peugeot 3008 Hybrid 4

2014-04-01
2014-01-1818
This paper includes analysis results for the control strategy of the Peugeot 3008 Hybrid4, a diesel-electric hybrid vehicle, under different thermal conditions. The analysis was based on testing results obtained under the different thermal conditions in the Advanced Powertrain Research Facility (APRF) at Argonne National Laboratory (ANL). The objectives were to determine the principal concepts of the control strategy for the vehicle at a supervisory level, and to understand the overall system behavior based on the concepts. Control principles for complex systems are generally designed to maximize the performance, and it is a serious challenge to determine these principles without detailed information about the systems. By analyzing the test results obtained in various driving conditions with the Peugeot 3008 Hybrid4, we tried to figure out the supervisory control strategy.
X