Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

1000-Hour Durability Evaluation of a Prototype 2007 Diesel Engine with Aftertreatment Using B20 Biodiesel Fuel

2009-11-02
2009-01-2803
A prototype 2007 ISL Cummins diesel engine equipped with a diesel oxidation catalyst (DOC), diesel particle filter (DPF), variable geometry turbocharger (VGT), and cooled exhaust gas recirculation (EGR) was tested at Southwest Research Institute (SwRI) under a high-load accelerated durability cycle for 1000 hours with B20 soy-based biodiesel blends and ultra-low sulfur diesel (ULSD) fuel to determine the impact of B20 on engine durability, performance, emissions, and fuel consumption. At the completion of the 1000-hour test, a thorough engine teardown evaluation of the overhead, power transfer, cylinder, cooling, lube, air handling, gaskets, aftertreatment, and fuel system parts was performed. The engine operated successfully with no biodiesel-related failures. Results indicate that engine performance was essentially the same when tested at 125 and 1000 hours of accumulated durability operation.
Technical Paper

3D-Semi 1D Coupling for a Complete Simulation of an SCR System

2013-04-08
2013-01-1575
The presented work describes how numerical modeling techniques were extended to simulate a full Selective Catalytic Reduction (SCR) NOx aftertreatement system. Besides predicting ammonia-to-NOX ratio (ANR) and uniformity index (UI) at the SCR inlet, the developed numerical model was able to predict NOx reduction and ammonia slip. To reduce the calculation time due to the complexity of the chemical process and flow field within the SCR, a semi-1D approach was developed and applied to model the SCR catalyst, which was subsequently coupled with a 3D model of the rest of the exhaust system. Droplet depletion of urea water solution (UWS) was modeled by vaporization and thermolysis techniques while ammonia generation was modeled by the thermolysis and hydrolysis method. Test data of two different SCR systems were used to calibrate the simulation results. Results obtained using the thermolysis method showed better agreement with test data compared to the vaporization method.
Technical Paper

42 Catalytic Reduction of Marine Sterndrive Engine Emissions

2002-10-29
2002-32-1811
A 2001 General Motors 4.3 liter V-6 marine engine was baseline emissions tested and then equipped with catalysts. Emission reduction effects of exhaust gas recirculation (EGR) were also explored. Because of a U.S. Coast Guard requirement that inboard engine surface temperatures be kept below 200°F, the engine's exhaust system, including the catalysts, was water-cooled. Engine emissions were measured using the ISO-8178-E4 5-mode steady-state test for recreational marine engines. In baseline configuration, the engine produced 16.6 g HC+NOx/kW-hr, and 111 g CO/kW-hr. In closed-loop control with catalysts, HC+NOx emissions were reduced by 75 percent to 4.1 g/kW-hr, and CO emissions were reduced by 36 percent to 70 g/kW-hr of CO. The catalyzed engine was then installed in a Sea Ray 190 boat, and tested for water reversion on both fresh and salt water using National Marine Manufacturers Association procedures.
Technical Paper

A Bench Test Facility for Engine Muffler Evaluation

1963-01-01
630283
The problem associated with laboratory evaluation of muffler acoustical characteristics are complicated both by the acoustical considerations involved in obtaining an adequate noise source and by the ambiguities involved in defining what constitutes quality in a muffler built for general application. In order to quantitatively define the characteristics of quality mufflers, an extensive series of field tests were conducted on a variety of sizes and types of mufflers in conjunction with four engine configurations. Work then turned to the development of a wide band siren noise source and acoustical test system which would simulate the high impedance character of an engine exhaust noise source, and in addition generate the necessary intensity and spectral characteristics required to obtain test data over the range of noise conditions encountered in the field.
Technical Paper

A Comparative Study of the Effects of Fuel Properties of Non-Petroleum Fuels on Diesel Engine Combustion and Emissions

1984-10-01
841334
A single cylinder indirect injection diesel engine was used to evaluate the emissions, fuel consumption, and ignition delay of non-petroleum liquid fuels derived from coal, shale, and tar sands. Correlations were made relating fuel properties with exhaust emissions, fuel consumption, and ignition delay. The results of the correlation study showed that the indicated fuel consumption, ignition delay, and CO emissions significantly correlated with the H/C ratio, specific gravity, heat of combustion, aromatics and saturates content, and cetane number, Multiple fuel properties were necessary to correlate the hydrocarbon emissions. The NOx emissions did not correlate well with any fuel property. Because these fuels from various resources were able to correlate succesfully with many of the fuel properties suggests that the degree of refinement or the chemical composition of the fuel is a better predictor of its performance than its resource.
Technical Paper

A Comparison of Emissions and Flow Restriction of Thinwall Ceramic Substrates for Low Emission Vehicles

1999-03-01
1999-01-0271
The emission and flow restriction characteristics of three different ceramic substrates with varying wall thickness and cell density (400 cpsi/6.5 mil, 600/4.3, and 600/3.5) are compared. These 106mm diameter substrates were catalyzed with similar amounts of washcoat and fabricated into catalytic converters having a total volume of 2.0 liters. A Pd/Rh catalyst technology was applied at a concentration of 6.65 g/l and a ratio of 20/1. Three sets of converters (two of each type) were aged for 100 hours on an engine dynamometer stand. After aging, the FTP performance of these converters were evaluated on an auto-driver FTP stand using a 2.4L, four-cylinder prototype engine and on a 2.4L, four-cylinder prototype vehicle. A third set of unaged converters was used for cold flow restriction measurements and vehicle acceleration tests.
Technical Paper

A Comparison of the Emissions from a Vehicle in Both Normal and Selected Malfunctioning Operation Modes

1996-10-01
961903
A 1990 Ford Taurus operated on reformulated gasoline was tested under three modes of malfunction: disabled heated exhaust gas oxygen (HEGO) sensor, inactive catalytic converter, and controlled misfire. The vehicle was run for four U.S. EPA UDDS driving schedule (FTP-75) tests at each of the malfunction conditions, as well as under normal operating conditions. An extensive set of emissions data were collected. In addition to the regulated emissions (HC, CO, and NOx), a detailed chemical analysis was carried out to determine the gas- and particle-phase non-regulated emissions. The effect of vehicle malfunction on gas phase emissions was significantly greater than it was on particle phase emissions. For example, CO emissions ranged from 2.57 g/mi (normal operation) to 34.77 g/mi (disable HEGO). Total HCs varied from 0.22 g/mi (normal operation) to 2.21 g/mi (blank catalyst). Emissions of air toxics (1,3-butadiene, benzene, acetaldehyde, and formaldehyde) were also significantly effected.
Journal Article

A Continuous Discharge Ignition System for EGR Limit Extension in SI Engines

2011-04-12
2011-01-0661
A novel continuous inductive discharge ignition system has been developed that allows for variable duration ignition events in SI engines. The system uses a dual-coil design, where two coils are connected by a diode, combined with the multi-striking coil concept, to generate a continuous current flow through the spark plug. The current level and duration can be regulated by controlling the number of re-strikes that each coil performs or the energy density the primary coils are charged to. Compared to other extended duration systems, this system allows for fairly high current levels during the entire discharge event while avoiding the extremely high discharge levels associated with other, shorter duration, high energy ignition systems (e.g. the plasma jet [ 1 , 2 ], railplug [ 3 ] or laser ignition systems [ 4 , 5 , 6 , 7 , 8 ].
Technical Paper

A Controls Overview on Achieving Ultra-Low NOx

2020-04-14
2020-01-1404
The California Air Resources Board (CARB)-funded Stage 3 Heavy-Duty Low NOX program focusses on evaluating different engine and after-treatment technologies to achieve 0.02g/bhp-hr of NOX emission over certification cycles. This paper highlights the controls architecture of the engine and after-treatment systems and discusses the effects of various strategies implemented and tested in an engine test cell over various heavy-duty drive cycles. A Cylinder De-Activation (CDA) system enabled engine was integrated with an advanced after-treatment controller and system package. Southwest Research Institute (SwRI) had implemented a model-based controller for the Selective Catalytic Reduction (SCR) system in the CARB Stage 1 Low-NOX program. The chemical kinetics for the model-based controller were further tuned and implemented in order to accurately represent the reactions for the catalysts used in this program.
Journal Article

A Demonstration of Dedicated EGR on a 2.0 L GDI Engine

2014-04-01
2014-01-1190
Southwest Research Institute (SwRI) converted a 2012 Buick Regal GS to use an engine with Dedicated EGR™ (D-EGR™). D-EGR is an engine concept that uses fuel reforming and high levels of recirculated exhaust gas (EGR) to achieve very high levels of thermal efficiency [1]. To accomplish reformation of the gasoline in a cost-effective, energy efficient manner, a dedicated cylinder is used for both the production of EGR and reformate. By operating the engine in this manner, many of the sources of losses from traditional reforming technology are eliminated and the engine can take full advantage of the benefits of reformate. The engine in the vehicle was modified to add the following components: the dedicated EGR loop, an additional injector for delivering extra fuel for reformation, a modified boost system that included a supercharger, high energy dual coil offset (DCO) ignition and other actuators used to enable the control of D-EGR combustion.
Technical Paper

A Dual-Use Hybrid Electric Command and Control Vehicle

2001-11-12
2001-01-2775
Until recently, U.S. government efforts to dramatically reduce emissions, greenhouse gases and vehicle fuel consumption have primarily focused on passenger car applications. Similar aggressive reductions need to be extended to heavy vehicles such as delivery trucks, buses, and motorhomes. However, the wide range of torques, speeds, and powers that such vehicles must operate under makes it difficult for any current powertrain system to provide the desired improvements in emissions and fuel economy. Hybrid electric powertrains provide the most promising, near-term technology that can satisfy these requirements. This paper highlights the configuration and benefits of a hybrid electric powertrain capable of operating in either a parallel or series mode. It describes the hybrid electric components in the system, including the electric motors, power electronics and batteries.
Technical Paper

A Dyno Data Acquisition System for Lean NOx Trap Investigations

2001-03-05
2001-01-0208
A flexible, easily configuration data acquisition system was designed and built for detailed studies of the steady state and dynamic properties of lean NOx traps for an engine dynamometer environment. The system is based on the industry standard VXI backplane. The overriding design philosophy was to design and develop a data acquisition system that was user friendly and could be operated easily by engine laboratory technicians, as well as by test engineers. The primary requirements guiding the design were the following: (1) the ability easily to configure, save, recall, modify, and print test configurations. (2) The ability to configure the gain, channel name, and engineering units for each analog channel. (3) The ability to trigger from one analog input channel. (4) A provision for numeric auto-incrementing of data file names. (5) The ability to save data in Excel™ compatible ASCII format. (6) The utilization of off-the shelf VXI hardware.
Technical Paper

A High-Energy Continuous Discharge Ignition System for Dilute Engine Applications

2013-04-08
2013-01-1628
SwRI has developed the DCO® ignition system, a unique continuous discharge system that allows for variable duration/energy events in SI engines. The system uses two coils connected by a diode and a multi-striking controller to generate a continuous current flow through the spark plug of variable duration. A previous publication demonstrated the ability of the DCO system to improve EGR tolerance using low energy coils. In this publication, the work is extended to high current (≻ 300 mA/high energy (≻ 200 mJ) coils and compared to several advanced ignition systems. The results from a 4-cylinder, MPI application demonstrate that the higher current/higher energy coils offer an improvement over the lower energy coils. The engine was tested at a variety of speed and load conditions operating at stoichiometric air-fuel ratios with gasoline and EGR dilution.
Technical Paper

A New High Temperature Ceramic Material for Diesel Particulate Filter Applications

2000-10-16
2000-01-2844
Cordierite-based diesel particulate filters (DPFs) have been in use for heavy duty engine applications for nearly two decades. Recently, passenger car applications for DPFs have begun to appear in Europe due to tightening legislation. While cordierite-based DPFs work well in most applications, it appears that in the passenger car exhaust environment under some uncontrolled regeneration conditions, cracking and melting of the existing cordierite-based DPF products have been reported. The present paper focuses on the development of new, high temperature oxide ceramics for DPF passenger car applications. When designed properly, DPFs made from these new materials do not show cracking or melting under uncontrolled regeneration. The material properties (strength, elastic modulus, coefficient of thermal expansion, etc.) and the filter performance properties (pressure drop, regeneration durability, etc.) have been characterized for DPFs made from these new materials.
Journal Article

A Next Generation Cordierite Diesel Particle Filter with Significantly Reduced Pressure Drop

2011-04-12
2011-01-0813
Diesel particle filters (DPF) have become a standard aftertreatment component for all current and future on-road diesel engines used in the US. In Europe the introduction of EUVI is expected to also result in the broad implementation of DPF's. The anticipated general trend in engine technology towards higher engine-out NOx/PM ratios results in a somewhat changing set of boundary conditions for the DPF predominantly enabling passive regeneration of the DPF. This enables the design of a novel filter concept optimized for low pressure drop, low thermal mass for optimized regeneration and fast heat-up of a downstream SCR system, therefore reducing CO₂ implications for the DPF operation. In this paper we will discuss results from a next-generation cordierite DPF designed to address these future needs.
Technical Paper

A Review of Diesel Particulate Filter Technologies

2003-06-23
2003-01-2303
Diesel particulate filters (DPF), known as traps in the mid-to late 1970s, were being developed for on-highway diesel applications. However, advanced engine design and in-cylinder engineering enabled diesel engines and vehicles to meet extremely low emission limits, including those of particulate matter (PM) without the need for DPF's or other auxiliary emission control devices. Late in 2000, the US EPA finalized its on-highway heavy-duty diesel emission standards, thus ending speculations regarding its stringency and establishing the lowest limits ever. The new nitric oxides (NOX) and PM limits are seen as technology-forcing. For NOX emissions, the debate rages on among the technical community about the merits of NOX adsorbers and urea selective catalytic reduction. On the other hand, there seems to be little doubt about DPF's as the technical solution for PM.
Technical Paper

A Sampling System for the Measurement of PreCatalyst Emissions from Vehicles Operating Under Transient Conditions

1993-03-01
930141
A proportional sampler for vehicle feedgas and tailpipe emissions has been developed that extracts a small, constant fraction of the total exhaust flow during rapid transient changes in engine speed. Heated sampling lines are used to extract samples either before or after the catalytic converter. Instantaneous exhaust mass flow is measured by subtracting the CVS dilution air volume from the total CVS volume. This parameter is used to maintain a constant dilution ratio and proportional sample. The exhaust sample is diluted with high-purity air or nitrogen and is delivered into Tedlar sample bags. These transient test cycle weighted feedgas samples can be collected for subsequent analysis of hydrocarbons and oxygenated hydrocarbon species. This “mini-diluter” offers significant advantages over the conventional CVS system. The concentration of the samples are higher than those collected from the current CVS system because the dilution ratio can be optimized depending on the fuel.
Technical Paper

A Simplified Approach to Modeling Exhaust System Emissions: SIMTWC

1999-10-25
1999-01-3476
The optimized design of an exhaust emission system in terms of performance, cost, packaging, and engine control strategy will be a key part of competitively meeting future more stringent emission standards. Extensive use of vehicle experiments to evaluate design system tradeoffs is far too time consuming and expensive. Imperative to successfully meeting the challenges of future emission regulations and cost constraints is the development of an exhaust system simulation model which offers the ability to sort through major design alternatives quickly while assisting in the interpretation of experimental data. Previously, detailed catalyst models have been developed which require the specification of intricate kinetic mechanisms to determine overall catalyst performance. While yielding extremely valuable results, these models use complex numerical algorithms to solve multiple partial differential equations which are time consuming and occasionally numerically unstable.
Technical Paper

A Small Displacement DI Diesel Engine Concept for High Fuel Economy Vehicles

1997-08-06
972680
The small-displacement direct-injection (DI) diesel engine is a prime candidate for future transportation needs because of its high thermal efficiency combined with near term production feasibility. Ford Motor Company and FEV Engine Technology, Inc. are working together with the US Department of Energy to develop a small displacement DI diesel engine that meets the key challenges of emissions, NVH, and power density. The targets for the engine are to meet ULEV emission standards while maintaining a best fuel consumption of 200g/kW-hr. The NVH performance goal is transparency with state-of-the-art, four-cylinder gasoline vehicles. Advanced features are required to meet the ambitious targets for this engine. Small-bore combustion systems enable the downsizing of the engine required for high fuel economy with the NVH advantages a four- cylinder has over a three-cylinder engine.
Technical Paper

A Structural Ceramic Diesel Engine-The Critical Elements

1987-02-01
870651
A structural ceramic diesel engine has the potential to provide low heat rejection and significant improvements in fuel economy. Analytical and experimental evaluations were conducted on the critical elements of this engine. The structural ceramic components, which included the cylinder, piston and pin, operated successfully in a single cylinder engine for over 100 hours. The potential for up to 8-11% improvement in indicated specific fuel consumption was projected when corrections for blow-by were applied. The ringless piston with gas squeeze film lubrication avoided the difficulty with liquid lubricants in the high temperature piston/cylinder area. The resulting reduction in friction was projected to provide an additional 15% improvement in brake specific fuel consumption for a multi-cylinder engine at light loads.
X