Refine Your Search

Search Results

Viewing 1 to 9 of 9
Technical Paper

Acoustic Modeling for Three-Dimensional Lightweight Windshields

2018-04-03
2018-01-0141
In the auto industry, lightweight window designs are drawing more attention for improved gas mileage and reduced exhaust emission. Corning’s Gorilla® Glass used in laminate design enables more than 30% weight reduction compared to conventional soda-lime glass laminates. In addition, Gorilla® Glass hybrid laminates (which are a laminate construction of a thick soda-lime glass outer play, a middle polyvinyl butyral interlayer, and a thin Gorilla Glass inner ply) also show significantly improved toughness due to advanced ion-exchange technology that provides high-surface compression. However, the reduced mass also allows increased transmission of sound waves through the windshield into the vehicle cabin. A system-level measurement approach has always been employed to assess overall vehicle acoustic performance by measuring sound pressure levels (SPL) at the driver’s ears. The measured sound signals are usually a superimposition of a variety of noise sources and transmission paths.
Technical Paper

Advanced Mounting System for Light Duty Diesel Filter

2007-04-16
2007-01-0471
This paper employs a systematic approach to packaging design and testing of a system and its components in order to determine the long term durability of light duty diesel filters. This effort has utilized a relatively new aluminum titanate filter technology as well as an advanced support mat technology engineered to provide superior holding force at lower temperatures while maintaining its high temperature performance. Together, these two new technologies form a system that addresses the unique operating conditions of diesel engines. Key physical properties of both the filter and the mat are demonstrated through laboratory testing. The system behavior is characterized by various laboratory techniques and validation procedures.
Technical Paper

Demonstration of High Temperature Durability for Oval Ceramic Catalytic Converters-2

1998-02-23
980042
The design of a canned ceramic oval converter, 77mm by 146.8mm, is described along with subsequent demonstration of its high temperature (1050°C) durability. A new mat deterioration phenomenon was recognized, and will be described. The mat deterioration results from sintering of the vermiculite and glass fiber structure when exposed to temperatures greater than approximately 1000°C. Due to the extremely high temperature experienced in the supporting mat of an oval converter exposed to 1050°C, an alternative mat configuration was utilized to eliminate potential mat sintering. An inner layer of non-intumescent mat (1500g/m2) was used in conjunction with an outer layer of intumescent mat (3100g/m2). The inner mat provided sufficient thermal protection to the outer intumescent mat, maintaining considerable holding pressure on the ceramic substrate. A tourniquet closure technique was developed to uniformly compress a hybrid mat system around the entire perimeter of the oval converter.
Technical Paper

Diesel Emission Control in Review – The Last 12 Months

2003-03-03
2003-01-0039
Driven mainly by tightening of regulations, advance diesel emission control technologies are rapidly advancing. This paper will review the field with the intent of highlighting representative studies that illustrate the state-of-the-art. First, the author makes estimates of the emission control efficiency targets for heavy and light duty applications. Given the emerging significance of ultrafines to health, and to emission control technologies, an overview of the significant developments in ultrafine particulate science is provided, followed by an assessment of filter technology. Major deNOx catalyst developments, in addition to SCR and LNT progress is described. Finally, system integration examples are provided. In general, progress is impressive and studies have demonstrated that high-efficiency systems are within reach in all sectors highway vehicle sectors. Engines are making impressive gains, and will increase the options for emission control.
Technical Paper

Effect of Windshield Design on High Speed Impact Resistance

2000-10-03
2000-01-2723
An axisymmetric finite element model is generated to simulate the windshield glass damage propagation subjected to impact loading of a flying object. The windshield glass consists of two glass outer layers laminated by a thin poly-vinyl butyral (PVB) layer. The constitutive behavior of the glass layers is simulated using brittle damage mechanics model with linear damage evolution. The PVB layer is modeled with linear viscoelastic solid. The model is used to predict and examine through-thickness damage evolution patterns on different glass surfaces and cracking patterns for different windshield designs such as variations in thickness and curvatures.
Technical Paper

Evaluation of a Stronger Ultra Thin Wall Corning Substrate for Improved Performance

2005-04-11
2005-01-1109
Current trends in automotive emissions control have tended towards reduced mass substrates for improved light-off performance coupled with a reduction in PGM levels. This trend has led to increasingly thinner walls in the substrates and increased open frontal areas, with a potential of reducing the overall mechanical strength of the substrate relative to the thicker walled lower cell density supports. This change in demand driven technology has also led to developments, at times costly, in the processing of the catalytic converter system. Changes in mat materials, handling technology and coating variables are only a few sources of overall increased system costs. Corning has introduced the Celcor® XS™ product to the market which significantly increases the strength of thin and ultra thin walled substrates.
Technical Paper

Performance Evaluations of Aluminum Titanate Diesel Particulate Filters

2007-04-16
2007-01-0656
Over the past decade, regulations for mobile source emissions have become more stringent thus, requiring advances in emissions systems to comply with the new standards. For the popular diesel powered passenger cars particularly in Europe, diesel particulate filters (DPFs) have been integrated to control particulate matter (PM) emissions. Corning Incorporated has developed a new proprietary aluminum titanate-based material for filter use in passenger car diesel applications. Aluminum titanate (hereafter referred to as AT) filters were launched commercially in the fall of 2005 and have been equipped on more than several hundred thousand European passenger vehicles. Due to their outstanding durability, filtration efficiency and pressure drop attributes, AT filters are an excellent fit for demanding applications in passenger cars. Extensive testing was conducted on engine to evaluate the survivability and long-term thermo-mechanical durability of AT filters.
Technical Paper

Review of Development, Properties and Packaging of Thinwall and Ultrathinwall Ceramic Substrates

2002-11-19
2002-01-3578
Driven by the worldwide automotive emission regulations, ceramic substrates were developed to serve as catalyst support. Since the introduction of Standard wall substrates in 1974, substrates with thinner walls and higher cell densities have been developed to meet the tighter emission requirements; Worldwide, the amount of Thinwall and Ultrathinwall substrates in series applications is increasing continuously. The properties of the substrates determine their performance regarding pressure drop, heat-up and conversion efficiency. These properties are analyzed, as well as the packaging process for Thinwall and Ultrathinwall substrates; A new packaging technique with lower pressure load is described.
Technical Paper

Road Test Measurement and SEA Model Correlation of Dominant Vehicle Wind Noise Transfer Paths

2012-11-25
2012-36-0624
In order to effectively use CAE to meet wind noise NVH targets, it is important to understand the main wind noise transfer paths. Testing confirmation of these paths by means of acoustic wind tunnel test is expensive and not always available. An on-road test procedure including a “windowing” method (using barriers) was developed to measure wind noise contribution at important higher frequencies through the main transfer paths, which were shown by test to be the glasses at a typical operating condition in which wind noise was dominant. The test data was used to correlate a full-vehicle SEA (Statistical Energy Analysis) model that placed emphasis on the glass properties, main noise transfer paths, and interior acoustic spaces while simplifying all other transmission paths. A method for generating wind noise loads was developed using measured glass vibration data, exterior pressure data, and interior acoustic data.
X