Refine Your Search

Topic

Author

Search Results

Technical Paper

A Model of Deploying Engineering Capability of Aerospace Suppliers in Producibility Analysis

1999-06-05
1999-01-2298
Aerospace companies have formed integrated product teams to improve their new product introduction process. Where significant components are outsourced, the suppliers’ expertise should be harnessed for a “win-win” solution to benefit both customer and supplier. CE practices for remote team work have been developed and used in a component engineering contract between a customer-supplier pair in the United Kingdom. Details of the producibility interaction dialogue between design team and supplier production engineers were captured. The resulting model represents the deployment of engineering capability of aerospace suppliers. It supports the setting up of CE projects with subcontract engineering work and is a reference for suppliers to develop their design/engineering capability.
Technical Paper

An Evaluation of CFD for Modelling the Flow Around Stationary and Rotating Isolated Wheels

1998-02-01
980032
Navier-Stokes calculations for the flow around an isolated wheel have been performed. Both a stationary wheel on a fixed ground and a rotating wheel on a moving ground were considered. Extensive comparisons with experimental measurements of surface static pressure coefficient and wake total pressure are made. These show that CFD can give good qualitative results for the flow field around both stationary and rotating wheels. Highlighted are details about the separation process from the top of the wheel and the flow structure around the wheel contact area.
Journal Article

Application of Genetic Algorithm for Preliminary Trajectory Optimization

2011-10-18
2011-01-2594
The aviation sector has played a significant role in shaping the world into what it is today. The rapid growth of global economies and the corresponding sharp rise in the number of people now wanting to travel on business and for pleasure, has largely been responsible for the development of this industry. With a predicted rise in Revenue Passenger Kilometers (RPK) by over 150% in the next 20 years, the industry will correspondingly be a significant contributor to environmental emissions. Under such circumstances optimizing aircraft trajectories for lowered emissions will play a critical role amongst various other measures, in mitigating the probable environmental effects of increased air traffic. Aircraft trajectory optimization using evolutionary algorithms is a novel field and preliminary studies have indicated that a reduction in emissions is possible when set as objectives.
Journal Article

Applying Design for Assembly Principles in Computer Aided Design to Make Small Changes that Improve the Efficiency of Manual Aircraft Systems Installations

2014-09-16
2014-01-2266
The installation of essential systems into aircraft wings involves numerous labour-intensive processes. Many human operators are required to perform complex manual tasks over long periods of time in very challenging physical positions due to the limited access and confined space. This level of human activity in poor ergonomic conditions directly impacts on speed and quality of production but also, in the longer term, can cause costly human resource problems from operators' cumulative development of musculoskeletal injuries. These problems are exacerbated in areas of the wing which house multiple systems components because the volume of manual work and number of operators is higher but the available space is reduced. To improve the efficiency of manual work processes which cannot yet be automated we therefore need to consider how we might redesign systems installations in the enclosed wing environment to better enable operator access and reduce production time.
Technical Paper

Applying a Concept for Robot-Human Cooperation to Aerospace Equipping Processes

2011-10-18
2011-01-2655
Significant effort has been applied to the introduction of automation for the structural assembly of aircraft. However, the equipping of the aircraft with internal services such as hydraulics, fuel, bleed-air and electrics and the attachment of movables such as ailerons and flaps remains almost exclusively manual and little research has been directed towards it. The problem is that the process requires lengthy assembly methods and there are many complex tasks which require high levels of dexterity and judgement from human operators. The parts used are prone to tolerance stack-ups, the tolerance for mating parts is extremely tight (sub-millimetre) and access is very poor. All of these make the application of conventional automation almost impossible. A possible solution is flexible metrology assisted collaborative assembly. This aims to optimise the assembly processes by using a robot to position the parts whilst an operator performs the fixing process.
Technical Paper

Automatic Segmentation of Aircraft Dents in Point Clouds (SAE Paper 2022-01-0022)

2022-03-08
2022-01-0022
Dents on the aircraft skin are frequent and may easily go undetected during airworthiness checks, as their inspection process is tedious and extremely subject to human factors and environmental conditions. Nowadays, 3D scanning technologies are being proposed for more reliable, human-independent measurements, yet the process of inspection and reporting remains laborious and time consuming because data acquisition and validation are still carried out by the engineer. For full automation of dent inspection, the acquired point cloud data must be analysed via a reliable segmentation algorithm, releasing humans from the search and evaluation of damage. This paper reports on two developments towards automated dent inspection. The first is a method to generate a synthetic dataset of dented surfaces to train a fully convolutional neural network. The training of machine learning algorithms needs a substantial volume of dent data, which is not readily available.
Technical Paper

Challenges of Digital Twin in High Value Manufacturing

2018-10-30
2018-01-1928
Digital Twin (DT) is a dynamic digital representation of a real-world asset, process or system. Industry 4.0 has recognised DT as the game changer for manufacturing industries in their digital transformation journey. DT will play a significant role in improving consistency, seamless process development and the possibility of reuse in subsequent stages across the complete lifecycle of the product. As the concept of DT is novel, there are several challenges that exist related to its phase of development and implementation, especially in high value manufacturing sector. The paper presents a thematic analysis of current academic literature and industrial knowledge. Based on this, eleven key challenges of DT were identified and further discussed. This work is intended to provide an understanding of the current state of knowledge around DT and formulate the future research directions.
Technical Paper

Comparison of the Far-Field Aerodynamic Wake Development for Three DrivAer Model Configurations using a Cost-Effective RANS Simulation

2017-03-28
2017-01-1514
The flow field and body aerodynamic loads on the DrivAer reference model have been extensively investigated since its introduction in 2012. However, there is a relative lack of information relating to the models wake development resulting from the different rear-body configurations, particularly in the far-field. Given current interest in the aerodynamic interaction between two or more vehicles, the results from a preliminary CFD study are presented to address the development of the wake from the Fastback, Notchback, and Estateback DrivAer configurations. The primary focus is on the differences in the far-field wake and simulations are assessed in the range up to three vehicle lengths downstream, at Reynolds and Mach numbers of 5.2×106 and 0.13, respectively. Wake development is modelled using the results from a Reynolds-Averaged Navier-Stokes (RANS) simulation within a computational mesh having nominally 1.0×107 cells.
Technical Paper

Contrail Avoidance Project Summary

2007-09-17
2007-01-3808
As aviation is one of the fastest growing industrial sector world wide, air-traffic emissions are projected to increase their stake in the contribution to global warming. According to recent studies, both CO2 and contrails will be the principal air-traffic pollutants. Since the environmental impact of contrails is potentially larger, their avoidance is becoming discussed in the aeronautical community. Work on this topic has been carried out at Cranfield University in form of a PhD project. A project summary is given in this paper where contrail avoidance strategies and the different aspects of contrail avoidance are highlighted. The first section provides an overview on the formation principles of contrails based on a literature review. Different technologies are given in the second part, and their introduction is discussed in the last section.
Technical Paper

Design Optimization of the Transmission System for Electric Vehicles Considering the Dynamic Efficiency of the Regenerative Brake

2018-04-03
2018-01-0819
In this paper, gear ratios of a two-speed transmission system are optimized for an electric passenger car. Quasi static system models, including the vehicle model, the motor, the battery, the transmission system, and drive cycles are established in MATLAB/Simulink at first. Specifically, since the regenerative braking capability of the motor is affected by the SoC of battery and motors torque limitation in real time, the dynamical variation of the regenerative brake efficiency is considered in this study. To obtain the optimal gear ratios, iterations are carried out through Nelder-Mead algorithm under constraints in MATLAB/Simulink. During the optimization process, the motor efficiency is observed along with the drive cycle, and the gear shift strategy is determined based on the vehicle velocity and acceleration demand. Simulation results show that the electric motor works in a relative high efficiency range during the whole drive cycle.
Technical Paper

Development of a Broad Delta Airframe and Propulsion Concepts for Reducing Aircraft Noise around Airports

2007-09-17
2007-01-3806
This paper describes the impact of noise on the civil aircraft design process. The challenge to design ‘silent’ aircraft is the development of efficient airframe-engine technologies, for which integration is essential to produce an optimum aircraft, otherwise penalties such as higher fuel consumption, and, or noise are a concern. A description of work completed by Cranfield University will cover design methodologies used for a Broad delta airframe concept, with reference to future studies into alternate concepts. Engine cycle designs for ultra-high bypass ratio, constant volume combustor, and recuperated propulsion cycles are described, with a discussion of integration challenges within the airframe.
Journal Article

Environmental Impact Assessment, on the Operation of Conventional and More Electric Large Commercial Aircraft

2013-09-17
2013-01-2086
Global aviation is growing exponentially and there is a great emphasis on trajectory optimization to reduce the overall environmental impact caused by aircraft. Many optimization techniques exist and are being studied for this purpose. The CLEAN SKY Joint Technology Initiative for aeronautics and Air transport, a European research activity run under the Seventh Framework program, is a collaborative initiative involving industry, research organizations and academia to introduce novel technologies to improve the environmental impact of aviation. As part of the overall research activities, “green” aircraft trajectories are addressed in the Systems for Green Operations (SGO) Integrated Technology Demonstrator. This paper studies the impact of large commercial aircraft trajectories optimized for different objectives applied to the on board systems.
Technical Paper

Experimental Investigation of Thin Water Film Stability and Its Characteristics in SLD Icing Problem

2011-06-13
2011-38-0064
The objective of this work is to investigate the thin water film characteristics by performing a range of experiments for different icing conditions. Our focus is on the SLD conditions where the droplets are larger and other effects like splashing and re-impingement could occur. Three features for the thin water film have been studied experimentally: the water film velocity, wave celerity and its wavelength. The experiments are performed in the icing facilities at Cranfiled University. The stability of the water film for the different conditions has been studied to find a threshold for transient from continues water film to non-continues form. A new semi-empirical method is introduced to estimate the water film thickness based on the experimental data of water film velocity in combination of theoretical analysis of water film dynamics. The outcome of this work could be implemented in SLD icing simulation but more analysis is needed.
Technical Paper

Foresight Vehicle Programme - Customer Understanding Processes In Design

2002-03-04
2002-01-0170
Customer feedback is normally fed into product design and engineering via quality surveys and therefore mainly comprises negative comments: complaints about things gone wrong. Whilst eradication of such problems will result in a feeling of satisfaction in existing customers, it will not instil the sense of delight required to attract conquest buyers. CUPID's aim is to conceive and evaluate ideas to stimulate product desirability through the provision of delightful features and execution. By definition, surprise and delight features cannot be foreseen, so we have to understand sensory appeal and, therefore, the “hidden” voice of the customer.
Technical Paper

Investigation of Seat Suspensions with Embedded Negative Stiffness Elements for Isolating Bus Users’ Whole-Body Vibrations

2021-02-17
2021-01-5019
Bus drivers are a group at risk of often suffering from musculoskeletal problems, such as low-back pain, while bus passengers on the last-row seats experience accelerations of high values. In this paper, the contribution of K-seat in decreasing the above concern is investigated with a detailed simulation study. The K-seat model, a seat with a suspension that functions according to the KDamper concept, which combines a negative stiffness element with a passive one, is benchmarked against the conventional passive seat (PS) in terms of comfort when applied to different bus users’ seats. More specifically, it is tested in the driver’s and two different passengers’ seats, one from the rear overhang and one from the middle part. For the benchmark shake, both are optimized by applying excitations that correspond to real intercity bus floor responses when it drives over a real road profile.
Technical Paper

Mathematical Programming for Optimization of Integrated Modular Avionics

2021-03-02
2021-01-0009
Every state-of-art aircraft has a complex distributed systems of avionics Line Replaceable Units/Modules (LRUs/LRMs), networked by several Data buses. These LRUs are becoming more complex because of an increasing number of new functions need to be integrated into avionics architecture. Moreover, the complexity of the overall avionics architecture and its impact on cable length, weight, power consumption, reliability and maintainability of avionics systems encouraged manufacturers to incorporate efficient avionics architectures in their aircraft design process. The evolution of avionics data buses and architectures have moved from distributed analog and federated architecture to digital integrated modular avionics (IMA). IMA architecture allows suppliers to develop their own LRUs/LRMs capable of specific features that can then be offered to Original Equipment Manufacturers (OEMs) as Commercial-Off-The-Shelf (COTS) products.
Technical Paper

On the Use of Reference Models in Automotive Aerodynamics

2004-03-08
2004-01-1308
In automotive aerodynamics much use has been made of generic reference models for research and correlation. Research work has been conducted mostly on small-scale versions of the models to investigate flow regimes and aerodynamic force and moment characteristics while correlation tests have made use of full-scale models to compare results between wind tunnels. More recently reference geometries have also been used as test cases in the validation of computational techniques. This paper reviews the design characteristics and use of several key reference models. The advantages and disadvantages of these designs and also the applicability of the results in providing guidelines for the development of production vehicles are discussed. It is advocated that when researchers choose to use simple models, existing reference geometries should be employed.
Technical Paper

Performance Analyses of Driver-Vehicle-Steer-By-Wire Systems Considering Driver Neuromuscular Dynamics

2016-04-05
2016-01-0456
One main objective is to find out how these parameters interact and optimal driver control gain and driver preview time are obtained. Some steps further, neuromuscular dynamics is considered and the system becomes different from the simplified driver-vehicle system studied before. New optimal driver control gain and driver preview time could be obtained for both tensed and relaxed muscle state. Final step aims at analysing the full system considering driver, neuromuscular, steer-by-wire and vehicle models. The steer-by-wire system could potentially have a significant influence on the vehicle when the driver is at impaired state, which could be represented by setting higher response delay time or smaller preview time. Vehicle's stability and active safety could also be improved by introducing the steer-by-wire system.
Technical Paper

Potential for Fuel Economy Improvements by Reducing Frictional Losses in a Pushing Metal V-Belt CVT

2004-03-08
2004-01-0481
This paper gives an overview of the development of a number of loss models for the pushing metal V-belt CVT. These were validated using a range of experimental data collected from two test rigs. There are several contributions to the torque losses and new models have been developed that are based upon relative motion between belt components and pulley deflections. Belt slip models will be proposed based upon published theory, expanded to take account of new findings from this work. The paper introduces a number of proposals to improve the efficiency of the transmission based on redesign of the belt geometry and other techniques to reduce frictional losses between components. These proposed efficiency improvements have been modelled and substituted into a complete vehicle simulation to show improvements in vehicle fuel economy over a standard European drive cycle.
Technical Paper

Preliminary Investigation of the Impact of Flight-Path Variability of Icing Conditions Upon the Critical Ice Shape

2007-09-24
2007-01-3333
The Cranfield Icing Research Tunnel was used to carry out a preliminary study whose objective was to identify whether or not the introduction of flight-path variability could generate accretions notably different to the critical ice shape. A reference (critical) ice shape was generated under conditions obtained from Appendix C before variability was applied, firstly to LWC and secondly to temperature. The approach is presented and selected results are introduced in this paper. Results show that ice accretions produced under variable conditions can be notably different to the reference profile, and are potentially more detrimental aerodynamically.
X