Refine Your Search

Topic

Author

Search Results

Technical Paper

A Contribution to Predictive Engine Calibration Based on Vehicle Drive Cycle Performance

2003-03-03
2003-01-0225
Both the automotive and truck industry are facing further regulated emissions legislation in the near future. Understanding the emissions and fuel consumption attributes of an engine/vehicle application during a drive cycle early in an engine development program is a critical step to steer the engine development program to a successful final product. The generally accepted approach is to calibrate an engine on a dynamometer and to adjust the operation of the engine to meet performance targets. With the current build and test approach, these adjustments may not be made until well into the development program, and this calibration is a costly and time consuming step in the engine development process.
Technical Paper

A Mechanical Valve System with Variable Lift, Duration, and Phase Using a Moving Pivot

1997-02-24
970334
A novel mechanism using a moving rocker pivot has been developed by Motive Engineering. The chosen approach offers variation of lift, duration, and phase. A compact, robust proof-of-concept mechanism has been designed, and fabricated. It was fitted to the intake valvetrain of a production SOHC four-cylinder engine. The operation of the mechanism is described. A longer-duration, higher-lift camshaft was designed to explore the potential benefits of the concept throughout the speed and load range. Dynamometer testing has been done to explore possible benefits to power, fuel economy, and exhaust emissions.
Technical Paper

A Powertrain Simulation for Engine Control System Development

1996-10-01
962171
A dynamic simulation of a school bus powertrain has been constructed for the purpose of assisting in the development of engine control strategies. With some extensions, this model can also be used as a first approximation to support the development of transmission shift control strategies, predict vehicle performance and drivability as well as estimate transient loads on the powertrain components. The simulation was constructed using the Matlab* computing environment along with the Simulink* toolbox, a package for the graphical development of dynamic simulation models. The vehicle model was validated against test data measured in the target vehicle powered by a natural gas engine to ensure that the simulation model yielded sensible predictions of the dynamic powertrain behavior. Equipped with a validated model, the control engineer can now use the simulation tool to assist in algorithm development. Sample applications are illustrated.
Technical Paper

A Study of the Effects of Spark Plug Electrode Design on 4-Cycle Spark-Ignition Engine Performance

2000-03-06
2000-01-1210
Engine tests were conducted on a production 2.5-liter V-6 engine to investigate the effects of spark plug tip designs on a 4-cycle SI engine of current technology. The data suggest that cyclic variation can increase when the ground electrode faces the primary intake port. Lean-operation limits were extended by the use of J-gap spark plugs as compared to surface-gap and ring-gap spark plugs at the conditions tested. The surface-gap type spark plugs lose some energy as the arc traverses the surface of the insulator. Voltage requirements decrease for reversed polarity at the part load conditions tested but increase at wide open throttle.
Technical Paper

A Transient Spray Mixing Model for Diesel Combustion

1976-02-01
760128
A transient spray mixing model forming the basis of heterogeneous combustion in direct injection diesel engines is described. Experimental results of transient fuel sprays in a high pressure, high temperature chamber form the basis of spray growth equations. Use of similarity of concentration profile across the spray in conjunction with spray geometry and mass conservation yields a complete description of spatial and temporal fuel-air distribution. Fuel preparation and air entrainment rates are calculated from the history of fuel-air distribution. Progressive evolution of combustion zones is determined by the fuel-air mixing process. Energy conservation and chemical kinetics calculations in each zone yield cylinder pressure and local nitric oxide concentration. The role of fuel-air mixing in diesel combustion is discussed. The model results are compared with experimental data.
Technical Paper

An Assessment of Turbocharging Systems for Diesel Engines from First and Second Law Perspectives

1988-02-01
880598
A number of turbocharging systems have been proposed for improving the drivability of diesel engines for heavy duty trucks. The systems studied here included resonant intake, wastegate, and variable geometry turbocharging. By imposing a fixed power, torque rise, and engine speed range, it was possible to evaluate the fuel economy impact of each approach. First Law and Second Law balances are included to illustrate the differences in the systems. It was found that variable geometry turbocharging provided the best fuel economy.
Technical Paper

An Electro-Mechanical Infinitely Variable Speed Transmission

2004-03-08
2004-01-0354
An electro-mechanical infinitely variable transmission (eVT), comprising a pair of planetary trains interconnected with two electric machines and clutches, has been proposed. The transmission leverages the advantages of an output power-split configuration for low-speed operation and a compound power-split configuration for high-speed operation. It is capable of being operated in a number of operating modes including an eVT only mode and a hybrid mode when equipped with on-board energy storage devices. The transmission provides a compact, highly efficient and potentially low cost driveline solution for both conventional vehicles and hybrid electric vehicles. A virtual transmission prototype was built in EASY51. A base vehicle model was also constructed in EASY5 environment with Ricardo Powertrain Library components.
Technical Paper

An Evaluation of the Lucas Combustion Noise Meter on Cummins ‘B’ Series Engines

1987-08-01
870952
Lucas Industries Noise Centre has introduced a combustion noise meter which is designed to predict the contribution of the combustion process to overall diesel engine noise. The performance of the meter is evaluated using Cummins B series engines in naturally-aspirated and turbocharged form. Combustion noise levels predicted by the meter are compared to levels determined using traditional techniques. The effects of several engine operating parameters on combustion noise are investigated under both steady state and accelerating conditions. The meter reliably predicts changes in combustion noise levels, and is a useful tool for performance development engineers. Combustion noise is shown to be related to the maximum rate of pressure rise at the onset of combustion, but combustion noise is not reliably related to maximum cylinder pressures.
Technical Paper

Cam Phaser Actuation Rate Performance Impact on Fuel Consumption and NOx Emissions Over the FTP-75 Drive Cycle

2003-03-03
2003-01-0023
Variable valve timing technology allows more flexibility for modern engines to meet peak performance, fuel economy and low emissions targets while providing good driveability. The most common device to achieve such improvement and comply with new emissions legislation is the oil pressure actuated cam phaser. Calibration for variable valve timing using dynamometer testing at steady state is the base for mapping the intake and exhaust valves phasing positions for the range of engine speed and load. Calibration is aimed at improving fuel economy and emissions levels while avoiding combustion instabilities. During a transient however, the actuation rate limitations of the cam phasing device, which depends on available oil pressure, cause the phaser to not meet the ECU timing map request. This lag alters the engine optimum operation. A proposed solution, the Cam Torque Actuated phaser or CTA, uses available cam torque energy to sustain high actuation rates independently of oil pressure.
Technical Paper

Cavitation Intensity Measurements for Internal Combustion Engines

1996-02-01
960884
Recent engine design trends towards increasing power, reducing weight, advancing of injection timing and increasing of injection rate and pressure could result in increased incidence of liner pitting. Liner pitting due to coolant cavitation is a complex function of many engine design parameters and operating conditions as described in reference [1]*. Traditionally, liner cavitation problems were not detected early in the development cycle. Traditional liner vibration and coolant pressure measurements in conjunction with a numerous amount of expensive engine endurance tests were then needed to resolve cavitation problems. A method newly developed by the author and described in reference [2] for cavitation intensity measurements was successfully utilized to map out engine operating condition and develop limit curves. This method could also be applied in a non intrusive fashion.
Technical Paper

Combustion Chamber Component Analysis for Advanced Heavy Duty Diesel Engines

1989-09-01
891900
Detailed thermal analysis was conducted on several advanced cylinder head, liner, and piston concepts, for low heat rejection diesel engines. The analysis was used to define an optimized engine configuration. Results pointed to the strategic use of oil cooling and insulation in the cylinder head, an oil cooled cylinder liner, and an insulated piston, with separate insulation behind the compression rings. Such a configuration reduced in-cylinder heat rejection by 30 percent, while durability would be expected to be maintained or improved from today's production levels.
Technical Paper

Combustion Chamber Insulation Effect on the Performance of a Low Heat Rejection Cummins V-903 Engine

1986-03-01
860317
Cummins Engine Company is developing a low heat rejection 450 kW engine under contract for the US Army Tank & Automotive Command. This paper discusses progress made toward achieving the program goals of 6.6 kcal/kW-min brake specific heat rejection and 200 g/kW-hr brake specific fuel consumption. Methodology for measuring heat rejection on a low heat rejection engine is presented. Design improvements of the base engine are discussed along with their effect on improving fuel consumption. Performance test data is assessed in terms of the first law energy balance and cooling load distribution. The heat rejection data provides insights on the performance of insulating components and two cooling system designs. Diesel cycle simulations are compared to the test data and are used to predict the effect of ceramic insulation on engine heat rejection.
Technical Paper

Comparison of Measured and Theoretical Inter-Ring Gas Pressure on a Diesel Engine

1996-10-01
961909
Inter-ring gas pressure and piston ring motion are considered important for the control of oil consumption, particulate emissions, and reduced friction. For this reason, inter-ring gas pressure was measured on a diesel engine. Two different ring pack configurations were tested (positive and negative twist second rings). A significant difference in measured inter-ring pressure was observed. The measurements were compared to the predictions of a cylinder kit model with favorable results. Predictions showed that the observed difference between measured inter-ring pressures is caused by a significant difference in ring motion. The reasons for these differences are explained in this paper.
Technical Paper

Cooling Higher Horsepower Highway Diesel Engines

1975-02-01
750131
The increase in power-to-weight ratio that results from the use of higher-horsepower diesel engines in highway service prompted this study of engine cooling. This paper covers the results obtained in testing different power-to-weight ratios on grades from sea level to over 11,000 ft and compares these results with those obtained from chassis and towing dynamometer cooling trials.
Technical Paper

Crankshaft Design Using a Generalized Finite Element Model

1979-02-01
790279
An analytical tool for the efficient analysis of crankshaft designs has been developed. Finite element models are generated from a limited number of key dimensions which describe a family of crankshafts. These models have been verified by stress and deflection measurements on several crankshaft throws.
Technical Paper

Cummins K-Series Engines

1974-02-01
740036
New heavy-duty diesel engines of 6-, 8-, 12-, and 16-cyl rated 75 hp/cyl turbocharged and 100 hp/cyl turbocharged and aftercooled are being developed. Design and development objectives include maximizing engine durability/reliability and use of common parts in all engine models. Fuel consumption, smoke, exhaust gas emissions, and engine noise equal or better than the best current engines within engine configurations readily adaptable to current automotive and construction equipment are also prime considerations. Initial models of the engine series meet the design and development objectives.
Technical Paper

Cylinder Head Gasket Simulation in Finite Element Analysis

1998-02-23
980843
This paper discusses a new approach to the finite element analysis of cylinder head gaskets. The new method is based on a feature of the ABAQUS® finite element solver which allows the user complete freedom to define unique material properties. This is an attractive option for cylinder head gasket analysis because the user has the freedom to describe materials which are non-linear and anisotropic. There is also the possibility of specifying independent loading and unloading characteristics. To ensure repeatability and avoid errors, the new method includes a user-friendly program to automate the input deck preparation procedure. In addition to offering new capabilities, the new method was found to converge more quickly than the current gasket analysis method.
Technical Paper

DI Boost: Application of a High Performance Gasoline Direct Injection Concept

2007-04-16
2007-01-1410
The development of engines with high specific output and low specific fuel consumption is now more than ever becoming the main focus for powertrain product development. A combination of two primary factors is driving this demand: increased fuel cost and stricter government regulations. As worldwide fuel prices continue to increase, consumers are shifting their purchasing toward more fuel-efficient vehicles. Also fueling the demand is new federal corporate average fuel economy (CAFÉ) regulations that are in place for the timeframe from 2008 to 2011. One concept to provide both high specific output and low specific fuel consumption is the combination of turbocharging and gasoline direct fuel injection. This is an attractive concept for the North American market where sport utility vehicles, light trucks and sports cars of all sizes are in demand from consumers.
Technical Paper

Design Aspects of Low-Noise Diesel Engines

1973-02-01
730246
Methods of reducing the noise level of a diesel engine include the suppression of the major modes of block vibration and treatment of the external surfaces. Design methods enable the frequencies and noise levels of these modes to be calculated for a conventionally designed engine. The important modes of vibration, the noise signature and the effect of block modifications of a standard production V-8 engine were found by experiments. These provided the basis for the design of an experimental low-noise engine. Design features include a suffer block, removal of the bottom part of the crankcase skirt, the addition of a single bearing beam, and the use of isolated panels and damped surfaces. The noise reduction obtained was 9 dBA. Most of this is due to the use of isolated and damped nonload carrying surfaces.
X