Refine Your Search

Search Results

Viewing 1 to 8 of 8
Journal Article

Analytic Solution for the Flow Distribution and Pressure Drop of Ceramic Partially-Plugged Wall Flow Diesel Particulate Filters

2015-04-14
2015-01-1056
A 1-dimensional analytic solution has been developed to evaluate the pressure drop and filtration performance of ceramic wall-flow partial diesel particulate filters (PFs). An axially resolved mathematical model for the static pressure and velocity profiles prevailing inside wall-flow filters, with such unique plugging configurations, is being proposed for the first time. So far, the PF models that have been developed are either iterative/numerical in nature [1], or based on commercial CFD packages [7]. In comparison, an analytic solution approach is a transparent and computationally inexpensive tool that is capable of accurately predicting trends as well as, offering explanations to fundamental performance behavior. The simple mathematical expressions that have been obtained facilitate rational decision-making when designing partial filters, and could also reduce the complexity of OBD logic necessary to control onboard filter performance.
Technical Paper

Development of a Kinetic Model to Evaluate Water Storage on Commercial Cu-Zeolite SCR Catalysts during Cold Start

2017-03-28
2017-01-0968
Commercial Cu-Zeolite SCR catalyst can store and subsequently release significant amount of H2O. The process is accompanied by large heat effects. It is critical to model this phenomenon to design aftertreatment systems and to provide robust tuning strategies to meet cold start emissions and low temperature operation. The complex reaction mechanism of water adsorption and desorption over a Cu-exchanged SAPO-34 catalyst at low temperature was studied through steady state and transient experiments. Steady state isotherms were generated using a gravimetric method and then utilized to predict water storage interactions with respect to feed concentration and catalyst temperature. Transient temperature programmed desorption (TPD) experiments provided the kinetic information required to develop a global kinetic model from the experimental data. The model captures fundamental characteristics of water adsorption and desorption accompanied by the heat effects.
Technical Paper

Diagnostics of Field-Aged Three-Way Catalyst (TWC) on Stoichiometric Natural Gas Engines

2019-04-02
2019-01-0998
Three-way catalysts have been used in a variety of stoichiometric natural gas engines for emission control. During real-world operation, these catalysts have experienced a large number of temporary and permanent deactivations including thermal aging and chemical contamination. Thermal aging is typically induced either by high engine-out exhaust temperatures or the reaction exotherm generated on the catalysts. Chemical contamination originates from various inorganic species such as Phosphorous (P) and Sulfur (S) that contain in engine fluids, which can poison and/or mask the catalyst active components. Such deactivations are quite difficult to simulate under laboratory conditions, due to the fact that multiple deactivation modes may occur at the same time in the real-world operations. In this work, a set of field-aged TWCs has been analyzed through detailed laboratory research in order to identify and quantify the real-world aging mechanisms.
Journal Article

Effect of Transition Metal Ion Properties on the Catalytic Functions and Sulfation Behavior of Zeolite-Based SCR Catalysts

2017-03-28
2017-01-0939
Copper- and Iron- based metal-zeolite SCR catalysts are widely used in US and European diesel aftertreatment systems to achieve drastic reduction in NOx emission. These catalysts are highly selective to N2 under wide range of operating conditions. Nevertheless, the type of transition metal has a significant impact on the key performance and durability parameters such as NOx conversion, selectivity towards N2O, hydrothermal stability, and sensitivity to fuel sulfur content. In this study, we explained the differences in the performance characteristics of these catalysts based on their relative acidic-basic nature of transition metal present in these catalysts using practically relevant gas species present in diesel exhaust such as NO2, SOx, and NH3. These experiments show that Fe-zeolite has relatively acidic nature as compared to Cu-zeolite that causes NH3 inhibition and hence explains low NOx conversion on Fe-zeolite at low temperature under standard SCR conditions.
Technical Paper

Experimental and Kinetic Modeling of Degreened and Aged Three-way Catalysts: Aging Impact on Oxygen Storage Capacity and Catalyst Performance

2018-04-03
2018-01-0950
The aging impact on oxygen storage capacity (OSC) and catalyst performance was investigated on one degreened and one aged (hydrothermally aged at 955 °C for 50 h) commercial three-way catalyst (TWC) by experiments and modeling. The difference of OSC between the degreened and aged TWCs was dependent on catalyst temperature. The largest difference was found at 600 °C, at which the amount of OSC decreased by 45.5%. Catalyst performance was evaluated through lightoff tests at two simulated engine exhaust conditions (lean and rich) on a micro-reactor. The aging impact on the catalyst performance was different under lean and rich environments and investigated separately. At the lean condition, oxidation of CO and C3H6 was significantly suppressed while oxidation of C3H8 was relatively less degraded. At the rich condition, the inhibition effect was more pronounced on the aged TWC and inhibiting hydrocarbon species from C3H6 partial oxidation can survive at temperatures up to 450 °C.
Technical Paper

Impact of Different Forms of Sulfur Poisoning on Diesel Oxidation Catalyst Performance

2013-04-08
2013-01-0514
Despite drastic reduction of sulfur content in diesel fuel in the recent years, especially with the introduction of Ultra-Low Sulfur Diesel (ULSD), sulfur poisoning remains one of the most significant factors impacting performance of various catalysts in diesel aftertreatment systems. This is because even with ULSD, cumulative exposure of a catalyst over its lifetime in a heavy-duty diesel system may amount to kilograms of sulfur. In this study, we have found that the impact of sulfur poisoning on the performance of various diesel oxidation catalysts (DOC) strongly depends on the catalyst's operation history. For example, exposing a DOC to limited amounts of freshly deposited sulfur in bench reactor testing was shown to have a substantial detrimental effect. On the other hand, several samples which returned from vehicle or test-cell aging with high sulfur loading, have shown no signs of poisoning.
Technical Paper

Lean Breakthrough Phenomena Analysis for TWC OBD on a Natural Gas Engine using a Dual-Site Dynamic Oxygen Storage Capacity Model

2017-03-28
2017-01-0962
Oxygen storage capacity (OSC) is one of the most critical characteristics of a three-way catalyst (TWC) and is closely related to the catalyst aging and performance. In this study, a dynamic OSC model involving two oxygen storage sites with distinct kinetics was developed. The dual-site OSC model was validated on a bench reactor and a natural gas engine. The model was capable of predicting temperature dependence on OSC with H2, CO and CH4 as reductants. Also, the effects of oxygen concentration and space velocity on the amount of OSC were captured by the model. The validated OSC model was applied to simulate lean breakthrough phenomena with varied space velocities and oxygen concentrations. It is found that OSC during lean breakthrough is not a constant for a particular TWC catalyst and is dependent on space velocity and oxygen concentration. Specifically, breakthrough time exhibits a non-linear, inverse correlation to oxygen flux.
Technical Paper

New Insights into the Unique Operation of Small Pore Cu-Zeolite SCR Catalyst: Overlapping NH3 Desorption and Oxidation Characteristics for Minimizing Undesired Products

2014-04-01
2014-01-1542
An operational challenge associated with SCR catalysts is the NH3 slip control, particularly for commercial small pore Cu-zeolite formulations as a consequence of their significant ammonia storage capacity. The desorption of NH3 during increasing temperature transients is one example of this challenge. Ammonia slipping from SCR catalyst typically passes through a platinum based ammonia oxidation catalyst (AMOx), leading to the formation of the undesired byproducts NOx and N2O. We have discovered a distinctive characteristic, an overlapping NH3 desorption and oxidation, in a state-of-the-art Cu-zeolite SCR catalyst that can minimize NH3 slip during temperature transients encountered in real-world operation of a vehicle.
X