Refine Your Search

Topic

Search Results

Viewing 1 to 18 of 18
Technical Paper

180MPa Piezo Common Rail System

2006-04-03
2006-01-0274
The challenge for the diesel engines today is to reduce harmful emissions, such as particulate matter (PM) and Nitrogen oxides (NOx), and enhance the fuel efficiency and power, which are its main advantages. To meet this challenge, DENSO has developed an advanced common rail system (CRS) that uses piezo actuated fuel injectors capable of delivering up to five injection events per combustion cycle at 180MPa, currently the world's highest commercially available diesel fuel injection pressure. The DENSO piezo injector incorporates an internally developed piezoelectric element that energizes quicker than its solenoid counterpart, thereby reducing the transition time for the start and end of the fuel injection event. The piezoelectric element and unique passage structure of the DENSO injector combine to provide a highly reliable and responsive fuel injection event.
Technical Paper

A Stand-Alone Charging Management System to Improve Fuel Economy, Based on an Algorithm of Estimating Vehicle Motion

2008-10-20
2008-21-0045
Increased interest in global warming issues requires rapid improvements in reduction of CO2 emissions. The automotive industry is placing high importance on improving fuel economy performance across their entire product lines. Charging Management System is a necessary element towards fuel economy improvement. Many of today's charging management systems perform at least two important functions: improving efficiency based on vehicle motion, and detecting battery state of charge. These systems become more complicated as more components (i.e. generators, current sensors and ECU) and software are added. Therefore, it is difficult to develop charging management systems for an entire product line and difficult to retrofit the system for vehicles already in production. A stand-alone charging management system solves these issues. This system is independent of the other vehicle systems. The software for improving fuel economy is installed in the generator or current sensor.
Technical Paper

Concept of Vehicle Electric Power Flow Management System (VEF)

2004-03-08
2004-01-0361
Increasing electric loads in a vehicle causes over-discharge of a battery and drag torque due to an alternator. This paper gives a system concept of vehicle electric power flow management to solve these issues. Its primary function includes preserving electricity in a battery, stabilizing electric bus voltage, interfacing with vehicle torque control system, and improving fuel economy. The key point to realize such a system is a unified structure. It offers ‘Plug and Play’ function for electric power management components. Newly developed Vehicle Electric Power Flow Management System (VEF ) totally controls electric power flow in a vehicle. VEF contains an Electric Power Manager and its functional sub-systems, and controls them with the key parameter ‘electric power’. The sub-system includes Generation, Storage, Conversion, and Distribution to the loads.
Technical Paper

Concepts and Evolution of Injector for Common Rail System

2012-09-10
2012-01-1753
Diesel injection equipment is required to be more accurate and higher in pressure to meet the increasingly strict emission, fuel consumption regulations and higher engine performance. It also needs to achieve a number of requirements such as robustness against diversified market fuels, pressure maintenance characteristics in the idle stop system (ISS), easy installation to engine, etc. One of the key component to meet these demands is injector.
Technical Paper

Condensation Simulation for ECU Package

2004-03-08
2004-01-1696
Up to now, while automobile electric packages have demanded the high density for small and light products, electric leaks, which have occurred due to condensation, have been a major problem. To prevent any electric leaks, a conformal coating on the electric parts (ex. ECU: Electronic Control Unit) has been needed, but in general the design rules of the conformal coating (ex. Application area) is vague. Therefore, DENSO demands to clear the design rules of conformal coating electric package for higher reliability. To meet the demand, DENSO has developed a condensation simulation method using CAE that can show the occurrence condition of condensation fast and accurately. In the result, DENSO has been able to get the design rules where to need the conformal coating in the electric package for automobiles.
Journal Article

Development of Inverter Drive Unit for Battery Electric Vehicle

2023-04-11
2023-01-0528
Toyota Motor Corporation has developed a new battery electric vehicle (BEV) on the dedicated e-TNGA platform for BEVs, which was designed to lower the center of gravity of the vehicle and increase body stiffness. In addition to a full-time 4WD system, another feature of this new BEV is its pleasurable driving experience. A new inverter drive unit was developed for this system. Unlike the previous inverter, the advantage of the new inverter is that it is small enough to be mounted inside the transaxle housing, thereby contributing to the availability of interior and luggage space. The temperature rise of the power semiconductors in the inverter was reduced considerably by the development of a new power semiconductor for BEVs. This enables a parallel layout of two power semiconductors instead of three. The components of the inverter were also downsized. A coreless current sensor was adopted, and capacitors were developed with significantly lower capacitance.
Technical Paper

Development of Lateral DMOS Using Process and Device Simulation

1998-02-23
980800
The lateral DMOS (LDMOS) had been developed for intelligent power IC[1][2] for ECU (Electric Control Unit). The process and device simulation methodology are used while developing a devices. The physical model and parameter in analytical model are calibrated to enhance the accuracy of the simulation and to reduce lead time and costs.
Technical Paper

Development of New 2.0-Liter Plug-in Hybrid System for the Toyota Prius

2024-04-09
2024-01-2169
Reducing vehicle CO2 emissions is an important measure to help address global warming. To reduce CO2 emissions on a global basis, Toyota Motor Corporation is taking a multi-pathway approach that involves the introduction of the optimal powertrains according to the circumstances of each region, including hybrid electric (HEVs) and plug-in hybrid electric vehicles (PHEVs), as well as battery electric vehicles (BEVs). This report describes the development of a new PHEV system for the Toyota Prius. This system features a traction battery pack structure, transaxle, and power control unit (PCU) with boost converter, which were newly developed based on the 2.0-liter HEV system. As a result, the battery capacity was increased by 1.5 times compared to the previous model with almost the same battery pack size. Transmission efficiency was also improved, extending the distance that the Prius can be driven as an EV by 70%.
Technical Paper

Double-pipe Internal Heat Exchanger for Efficiency Improvement in Front Automotive Air Conditioning System

2007-04-16
2007-01-1523
In automotive air conditioning, balancing comfort and fuel efficiency is very important. Vehicle cooling performance improvements during initial cool down has reached a limit in recent years, especially in very hot regions. We have addressed this issue by developing a unique double-pipe internal heat exchanger. In the main discourse, we first clarify the concept of the internal heat exchanger system (IHE) using the temperature difference between the high and low pressure pipes in the refrigeration cycle, and propose the application of an efficient internal heat exchanger. This unique double-pipe internal heat exchanger can easily be manufactured by inserting the inner pipe into the outer pipe and by fixing the pipes at both ends. The length of the IHE is 400mm. This double-pipe internal heat exchanger can increase cooling performance by 5-12% at the equivalent power consumption levels in the same space as a conventional front air conditioner system.
Technical Paper

Gateway Application for Automotive Network System “BEAN”

1999-03-01
1999-01-1278
In applying a LAN to automotive electronics systems, an optimal protocol has been adopted for each system so far, such as body electronics system, entertainment system, service system and power train system. As low cost communication protocol “BEAN” (Body Electronics Area Network; SAE paper 970297) adopted to wider range of functions on vehicle, ECU's numbers are increased which have BEAN communication and that is branched to plural communication networks. We have succeeded in rationalization of those network systems with the gateway function on a delegated ECU for each LAN system on vehicle. And this system also realized the connection to after market products by data exchange through the gateway function, while securing vehicle fail-safe.
Technical Paper

Highly Reliable High Power Diode Laser for Laser Radar Application

2004-03-08
2004-01-1594
In 1997, we have applied laser technology to the world's first practical adaptive cruise control (ACC) system. The ACC system is based on 2-dimensional scanning laser-radar-sensor technology that is supported by highly reliable high power diode laser. Now, we have developed 34W output power multiple-quantum-well (MQW) diode laser. The power of 870nm near IR diode laser is twice as high as conventional one, thus it meets the strong needs for robust detection of the reflective laser beams from the moving vehicle ahead. Furthermore, Au-Sn-Ni a new alloy solder has been employed to sustain high degree of vibration and thermal shock to raise reliability. The acceleration life-tests at high temperature pulsed operation demonstrate the high reliability of developed 34W high power diode laser.
Technical Paper

Low-Emission and Fuel-Efficient Exhaust System with New Air-Fuel Ratio Sensor

2020-04-14
2020-01-0655
This paper describes an exhaust system using a new air-fuel ratio (hereinafter, A/F) sensor that contributes to low emissions and low fuel consumption of gasoline engines. As the first technical feature, the water splash resistance of the A/F sensor has been substantially improved which allows A/F control to be enabled without delay during engine cold start. To realize this capability, it is important that the sensor characteristics are not affected by the condensed water generated in the exhaust pipe. Therefore, a technique that has the effectiveness of a water splash resistance layer with water repellent function is demonstrated. As the second technical feature, the power consumption of the sensor has been substantially reduced. This is achieved by improving thermal efficiency of the sensor that the element can be activated at a low temperature.
Technical Paper

Machine-Learned Emission Model for Diesel Exhaust On-Board Diagnostics and Data Flow Processor as Enabler

2021-12-17
2021-01-5108
Conventional methods of physicochemical models require various experts and a high measurement demand to achieve the required model accuracy. With an additional request for faster development time for diagnostic algorithms, this method has reached the limits of economic feasibility. Machine learning algorithms are getting more popular in order to achieve a high model accuracy with an appropriate economical effort and allow to describe complex problems using statistical methods. An important point is the independence from other modelled variables and the exclusive use of sensor data and actuator settings. The concept has already been successfully proven in the field of modelling for exhaust gas aftertreatment sensors. An engine-out nitrogen oxide (NOX) emission sensor model based on polynomial regression was developed, trained, and transferred onto a conventional automotive electronic control unit (ECU) and also proves real-time capability.
Technical Paper

Mixed Signal Power IC for Automotive Electronics

2007-04-16
2007-01-1595
Many ICs are used in various electronic components in automotive applications, such as ECUs (electronic control units) and smart actuators. Automotive ICs required the following features: (1) high integration of analog, digital and output devices; (2) high breakdown voltage for analog devices standing the battery voltage; (3) highly accurate control for analog circuits; (4) susceptibility under harsh operating conditions, such as high ambient temperature and high humidity; and (5) high surge immunity such as ESD (electrostatic discharge) robustness. To meet these requirements, we developed analog and output devices with improved surge endurance based on SOI wafer and trench-dielectric-isolation technologies. Analog circuit applications, especially accurate power management or high-precision solenoid driving, demands stable temperature-compensated output. Load dump and battery-jumping also needs high voltage protection and high noise immunity for these devices.
Technical Paper

Power Control Unit for High Power Hybrid System

2007-04-16
2007-01-0271
The hybrid vehicle market is growing rapidly recently, while carmakers are planning to expand their lineup of hybrid vehicles from the compact to the full-size. To make this rapid development possible, the Power Control Unit (PCU) that controls traction motors of hybrid vehicles is required both to be smaller in size for the ease of packaging, and higher in output power to fulfill the need for full-size vehicles. To achieve both of these targets, we have developed a PCU for the Lexus LS600h with higher output power per volume through significantly improved cooling design for power semiconductor chips by dissipating heat from both sides of them. The following is an overview of the developed technology.
Journal Article

Prediction of Cavitation Erosion Intensity Using Large-Scale Diesel Nozzles

2019-12-19
2019-01-2278
In the field of heavy-duty diesel engines, which require lifetime durability and high fuel efficiency, there is a growing demand for increased injection pressure and increased flow rate inside injection holes. This trend makes it important to prevent cavitation erosion of injector nozzles. This paper aims to clarify the relation between cavitation behavior and erosion damage experimentally by visualizing the flow inside diesel nozzles and to establish a new method for predicting cavitation erosion. To visualize internal flow, authors used the large-scale transparent nozzle whose Reynolds number and Cavitation number were matched with those of the actual real-size nozzle. Direct observation showed that the form of the cavitation changed from string-type cavitation to film-type cavitation with increasing needle lift.
Technical Paper

Super Ignition Spark Plug with Fine Center & Ground Electrodes

2003-03-03
2003-01-0404
Spark plugs with higher ignitability are continuously in great demand to realize high fuel efficiency and low emissions. To meet this demand, DENSO launched the Iridium Spark Plug in 1997, which realized the two characteristics that had been conventionally difficult to achieve concurrently-high ignitability and long life. The development of this product was enabled by miniaturizing the center electrode, produced using DENSO's original, highly wear-resistant iridium alloy (featuring a high melting point and excellent oxidation resistance). While spark plugs are now required to have a longer service life, they are also required to be higher in ignitability, as exhaust gas regulations have been tightened recently. However, the effort to miniaturize the center electrode is reaching a limit.
Technical Paper

“Wireless Communications for Vehicle Safety:Radio Link Performance & Wireless Connectivity Methods”

2006-10-16
2006-21-0030
Many accidents occur today when distant objects or roadway impediments are not quickly detected. To help avoid these accidents, longer-range safety systems are needed with real-time detection capability and without requiring a line-of-sight (LOS) view by the driver or sensor. Early detection at intersections is required for obstacle location around blind corners and dynamic awareness of approaching vehicles on intersecting roadways. Many of today's vehicular safety systems require short LOS distances to be effective. Such systems include forward collision warning, adaptive cruise control, and lane keeping assistance. To operate over longer LOS distances and in Non-LOS (NLOS) conditions, cooperative wireless communications systems are being considered. This paper describes field results for LOS and NLOS radio links for one candidate wireless system: 5.9GHz Dedicated Short Range Communications (DSRC).
X