Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

A Co-Simulation Environment for Virtual Prototyping of Ground Vehicles

2007-10-30
2007-01-4250
The use of virtual prototyping early in the design stage of a product has gained popularity due to reduced cost and time to market. The state of the art in vehicle simulation has reached a level where full vehicles are analyzed through simulation but major difficulties continue to be present in interfacing the vehicle model with accurate powertrain models and in developing adequate formulations for the contact between tire and terrain (specifically, scenarios such as tire sliding on ice and rolling on sand or other very deformable surfaces). The proposed work focuses on developing a ground vehicle simulation capability by combining several third party packages for vehicle simulation, tire simulation, and powertrain simulation. The long-term goal of this project consists in promoting the Digital Car idea through the development of a reliable and robust simulation capability that will enhance the understanding and control of off-road vehicle performance.
Journal Article

A Hydrogen Direct Injection Engine Concept that Exceeds U.S. DOE Light-Duty Efficiency Targets

2012-04-16
2012-01-0653
Striving for sustainable transportation solutions, hydrogen is often identified as a promising energy carrier and internal combustion engines are seen as a cost effective consumer of hydrogen to facilitate the development of a large-scale hydrogen infrastructure. Driven by efficiency and emissions targets defined by the U.S. Department of Energy, a research team at Argonne National Laboratory has worked on optimizing a spark-ignited direct injection engine for hydrogen. Using direct injection improves volumetric efficiency and provides the opportunity to properly stratify the fuel-air mixture in-cylinder. Collaborative 3D-CFD and experimental efforts have focused on optimizing the mixture stratification and have demonstrated the potential for high engine efficiency with low NOx emissions. Performance of the hydrogen engine is evaluated in this paper over a speed range from 1000 to 3000 RPM and a load range from 1.7 to 14.3 bar BMEP.
Journal Article

A Linkage Based Solution Approach for Determining 6 Axis Serial Robotic Travel Path Feasibility

2016-04-05
2016-01-0336
When performing trajectory planning for robotic applications, there are many aspects to consider, such as the reach conditions, joint and end-effector velocities, accelerations and jerk conditions, etc. The reach conditions are dependent on the end-effector orientations and the robot kinematic structure. The reach condition feasibility is the first consideration to be addressed prior to optimizing a solution. The ‘functional’ work space or work window represents a region of feasible reach conditions, and is a sub-set of the work envelope. It is not intuitive to define. Consequently, 2D solution approaches are proposed. The 3D travel paths are decomposed to a 2D representation via radial projections. Forward kinematic representations are employed to define a 2D boundary curve for each desired end effector orientation.
Technical Paper

A Preliminary Study of Energy Recovery in Vehicles by Using Regenerative Magnetic Shock Absorbers

2001-05-14
2001-01-2071
Road vehicles can expend a significant amount of energy in undesirable vertical motions that are induced by road bumps, and much of that is dissipated in conventional shock absorbers as they dampen the vertical motions. Presented in this paper are some of the results of a study aimed at determining the effectiveness of efficiently transforming that energy into electrical power by using optimally designed regenerative electromagnetic shock absorbers. In turn, the electrical power can be used to recharge batteries or other efficient energy storage devices (e.g., flywheels) rather than be dissipated. The results of the study are encouraging - they suggest that a significant amount of the vertical motion energy can be recovered and stored.
Technical Paper

A Severe Ankle and Foot Injury in Frontal Crashes and Its Mechanism

1998-11-02
983145
In a frontal automotive crash, the driver's foot is usually stepping on the brake pedal as an instinctive response to avoid a collision. The tensile force generated in the Achilles tendon produces a compressive preload on the tibia. If there is intrusion of the toe board after the crash, an additional external force is applied to the driver's foot. A series of dynamic impact tests using human cadaveric specimens was conducted to investigate the combined effect of muscle preloading and external force. A constant tendon force was applied to the calcaneus while an external impact force was applied to the forefoot by a rigid pendulum. Preloading the tibia significantly increased the tibial axial force and the combination of these forces resulted in five tibial pylon fractures out of sixteen specimens.
Technical Paper

An Experimental Investigation on Aldehyde and Methane Emissions from Hydrous Ethanol and Gasoline Fueled SI Engine

2020-09-15
2020-01-2047
Use of ethanol as gasoline replacement can contribute to the reduction of nitrogen oxide (NOx) and carbon oxide (CO) emissions. Depending on ethanol production, significant reduction of greenhouse-gas emissions is possible. Concentration of certain species, such as unburned ethanol and acetaldehyde in the engine-out emissions are known to rise when ratio of ethanol to gasoline increases in the fuel. This research explores on hydrous ethanol fueled port-fuel injection (PFI) spark ignition (SI) engine emissions that contribute to photochemical formation of ozone, or so-called ozone precursors and the precursor of peroxyacetyl nitrates (PANs). The results are compared to engine operation on gasoline. Concentration obtained by FTIR gas analyzer, and mass-specific emissions of formaldehyde (HCHO), acetaldehyde (MeCHO) and methane (CH4) under two engine speed, four load and two spark advance settings are analyzed and presented.
Technical Paper

An Overview of ARES Research

2011-01-19
2011-26-0085
With an intention to improve the performance of reciprocating engines used for distributed generation US-Dept. of Energy has launched ARES program. Under this program, the performance targets for these natural gas-fuelled stationary engines are ≻ 50% efficiency and NOx emissions ≺ 0.1 g/bhp-hr by 2013. This paper presents two technologies developed under this program. Lean-burn operation is very popular with engine manufacturers as it offers simultaneous low-NOx emissions and high engine efficiencies, while not requiring the use of any aftertreatment devices. Though engines operating on lean-burn operation are capable of better performance, they are currently limited by the inability to sustain reliable ignition under lean conditions. Addressing such an issue, research has evaluated the use of laser ignition as an alternative to the conventional Capacitance Discharge Ignition (CDI).
Journal Article

Analysis of Input Power, Energy Availability, and Efficiency during Deceleration for X-EV Vehicles

2013-04-08
2013-01-1473
The recovery of braking energy through regenerative braking is a key enabler for the improved efficiency of Hybrid Electric Vehicles, Plug-in Hybrid Electric, and Battery Electric Vehicles (HEV, PHEV, BEV). However, this energy is often treated in a simplified fashion, frequently using an overall regeneration efficiency term, ξrg [1], which is then applied to the total available braking energy of a given drive-cycle. In addition to the ability to recapture braking energy typically lost during vehicle deceleration, hybrid and plug-in hybrid vehicles also allow for reduced or zero engine fueling during vehicle decelerations. While regenerative braking is often discussed as an enabler for improved fuel economy, reduced fueling is also an important component of a hybrid vehicle's ability to improve overall fuel economy.
Technical Paper

Application of CFD Modeling in Combustion Bowl Assessment of Diesel Engines Using DoE Methodology

2006-10-16
2006-01-3330
The current paper describes a methodology for combustion bowl assessment for diesel engines. The methodology is based on the application of Computational Fluid Dynamics (CFD) following a Design of Experiments (DoE) procedure. In this work the 3D CFD simulation was performed by the commercial CFD code AVL-FIRE for different combustion bowls from intake valve closing (IVC) to exhaust valve opening (EVO). The initial conditions (at IVC) and boundary conditions were obtained from 1D simulation. Since the work was concentrated on the spray injection, mixing, combustion as well as bowl aerodynamics only a sector mesh was employed for the calculations. A DoE procedure was also used for this simulation work in order to minimize the number of simulation runs and at the same time maintaining the accuracy required assessing the influences of different bowl geometry, spray and intake air motion parameters.
Technical Paper

Biomechanical Response of the Bovine Pia-Arachnoid Complex to Normal Traction Loading at Varying Strain Rates

2007-10-29
2007-22-0004
The pia-arachnoid complex (PAC) covering the brain plays an important role in the mechanical response of the brain due to impact or inertial loading. The mechanical properties of the bovine PAC under tensile loading have been characterized previously. However, the transverse properties of this structure, such as shear and normal traction which are equally important to understanding the skull/brain interaction under traumatic loading, have not been investigated. These material properties are essential information needed to adequately define the material model of the PAC in a finite element (FE) model of human brain. The purpose of this study was to determine, experimentally, the material properties of the PAC under normal traction loading. PAC specimens were obtained from freshly slaughtered bovine subjects from various locations.
Technical Paper

Blend Ratio Optimization of Fuels Containing Gasoline Blendstock, Ethanol, and Higher Alcohols (C3-C6): Part I - Methodology and Scenario Definition

2013-04-08
2013-01-1144
The U.S. Renewable Fuel Standard (RFS2) requires an increase in the use of advanced biofuels up to 36 billion gallons by 2022. Longer chain alcohols, in addition to cellulosic ethanol and synthetic biofuels, could be used to meet this demand while adhering to the RFS2 corn-based ethanol limitation. Higher carbon number alcohols can be utilized to improve the energy content, knock resistance, and/or petroleum displacement of gasoline-alcohol blends compared to traditional ethanol blends such as E10 while maintaining desired and regulated fuel properties. Part I of this paper focuses on the development of scenarios by which to compare higher alcohol fuel blends to traditional ethanol blends. It also details the implementation of fuel property prediction methods adapted from literature. Possible combinations of eight alcohols mixed with a gasoline blendstock were calculated and the properties of the theoretical fuel blends were predicted.
Technical Paper

Blend Ratio Optimization of Fuels Containing Gasoline Blendstock, Ethanol, and Higher Alcohols (C3-C6): Part II - Blend Properties and Target Value Sensitivity

2013-04-08
2013-01-1126
Higher carbon number alcohols offer an opportunity to meet the Renewable Fuel Standard (RFS2) and improve the energy content, petroleum displacement, and/or knock resistance of gasoline-alcohol blends from traditional ethanol blends such as E10 while maintaining desired and regulated fuel properties. Part II of this paper builds upon the alcohol selection, fuel implementation scenarios, criteria target values, and property prediction methodologies detailed in Part I. For each scenario, optimization schemes include maximizing energy content, knock resistance, or petroleum displacement. Optimum blend composition is very sensitive to energy content, knock resistance, vapor pressure, and oxygen content criteria target values. Iso-propanol is favored in both scenarios' suitable blends because of its high RON value.
Technical Paper

Combustion Characteristics of PRF and TSF Ethanol Blends with RON 98 in an Instrumented CFR Engine

2018-09-10
2018-01-1672
The CFR F1 engine is the standard testing apparatus used for rating the research octane number (RON) of gasoline fuels. Unlike the motor octane number (MON) method, where the intake port temperature after the carburetor is controlled by an electric heater, the mixture temperature can vary during the RON test due to the heat of vaporization (HoV) of the fuel. Ethanol is receiving increasing attention as a high octane and high HoV fuel component. This work presents an analysis of the combustion characteristics during the RON rating of ethanol fuel blends according to the standard ASTM D2699 method, highlighting the effects of ethanol concentration and base fuel composition. All fuels were blended to a constant RON of 98. Ethanol levels varied from 0 to 50 vol% and the base fuels were surrogate blends composed of primary reference fuels (PRF), toluene standardization fuels (TSF), and a four component gasoline surrogate.
Technical Paper

Comparing the Performance of SunDiesel™ and Conventional Diesel in a Light-Duty Vehicle and Heavy-Duty Engine

2005-10-24
2005-01-3776
SunDiesel fuel is a biomass-to-liquid (BTL) fuel that may have certain attributes different from conventional diesel. In this investigation, 100% SunDiesel was tested both in a Mercedes A-Class (MY1999) diesel vehicle and a single-cylinder heavy-duty compression-ignition direct-injection engine. The SunDiesel's emissions and fuel consumption were significantly better than conventional diesel fuel, especially in nitrogen oxides (NOx) reduction. In the vehicle U.S. Environmental Protection Agency (EPA), Federal Test Procedure 75 (FTP-75), and New European Drive Cycle (NEDC) tests, the carbon dioxide emissions on a mile basis (g/mile) from SunDiesel fuel were almost 10% lower than the conventional diesel fuel. Similarly, in the single-cylinder engine steady-state tests, the reductions in brake specific NOx, carbon monoxide (CO), and particulate matter (PM) are equally significant. Combustion analysis, though not conclusive, indicates that there are differences deserving further research.
Technical Paper

Continuously Variable Transmission Modifications and Control for a Diesel Hybrid Electric Powertrain

2004-08-23
2004-40-0057
The Center for Transportation Research (CTR) Vehicle Systems team modified a Nissan CK-2 Continuously Variable Transmission (CVT) for a diesel hybrid powertrain application. Mechanical and electrical modifications were made to the CVT, both internal and external to the transmission. The goal of this experiment was to investigate and demonstrate the potential of CVT for diesel engines hybrid electric vehicles (HEVs) in fuel economy and emissions. The test set-up consisted of a diesel engine coupled to an electric motor driving a Continuously Variable Transmission (CVT). This hybrid drive is connected to a dynamometer and a DC electrical power source creating a vehicle context by combining advanced computer models and emulation techniques. The experiment focuses on the impact particular transmission control strategies have on measured fuel economy and emissions specifically, nitrogen oxides (NOx) and particulate matter (PM).
Technical Paper

Correlation between Physical Properties and Autoignition Parameters of Alternate Fuels

1985-02-01
850266
The correlations between the physical properties and autoignition parameters of several alternate fuels have been examined. The fuels are DF-2 and its blends with petroleum derived fuels, coal derived fuels, shale derived fuels, high aromatic naphtha sun-flower oils, methanol and ethanol. A total of eighteen existing correlations are discussed. An emphasis is made on the suitability of each of the correlations for the development of electronic controls for diesel engines when run on alternate fuels. A new correlation has been developed between the cetane number of the fuels and its kinematic viscosity and specific gravity.
Technical Paper

Detailed Morphological Properties of Nanoparticles from Gasoline Direct Injection Engine Combustion of Ethanol Blends

2013-09-08
2013-24-0185
Detailed properties of particulate matter (PM) emissions from a gasoline direct injection (GDI) engine were analyzed in terms of size, morphology, and nanostructures, as gasoline and its ethanol blend E20 were used as a fuel. PM emissions were sampled from a 0.55L single-cylinder GDI engine by means of a scanning mobility particle sizer (SMPS) for size measurements and a self-designed thermophoretic sampling device for the subsequent analyses of size, morphology and nanostructures using a transmission electron microscope (TEM). The particle sizes were evaluated with variations of air-fuel equivalence ratio and fuel injection timing. The most important result from the SMPS measurements was that the number of nucleation-mode nanoparticles (particularly those smaller than 10 - 15 nm) increased significantly as the fuel injection timing was advanced to the end-of-injection angle of 310° bTDC.
Journal Article

Development of Dual-Fuel Low Temperature Combustion Strategy in a Multi-Cylinder Heavy-Duty Compression Ignition Engine Using Conventional and Alternative Fuels

2013-09-24
2013-01-2422
Low temperature combustion through in-cylinder blending of fuels with different reactivity offers the potential to improve engine efficiency while yielding low engine-out NOx and soot emissions. A Navistar MaxxForce 13 heavy-duty compression ignition engine was modified to run with two separate fuel systems, aiming to utilize fuel reactivity to demonstrate a technical path towards high engine efficiency. The dual-fuel engine has a geometric compression ratio of 14 and uses sequential, multi-port-injection of a low reactivity fuel in combination with in-cylinder direct injection of diesel. Through control of in-cylinder charge reactivity and reactivity stratification, the engine combustion process can be tailored towards high efficiency and low engine-out emissions. Engine testing was conducted at 1200 rpm over a load sweep.
Technical Paper

Development of a Multiple Injection Strategy for Heated Gasoline Compression Ignition (HGCI)

2023-04-11
2023-01-0277
A multiple-injection combustion strategy has been developed for heated gasoline direct injection compression ignition (HGCI). Gasoline was injected into a 0.4L single cylinder engine at a fuel pressure of 300bar. Fuel temperature was increased from 25degC to a temperature of 280degC by means of electric injector heater. This approach has the potential of improving fuel efficiency, reducing harmful CO and UHC as well as particulate emissions, and reducing pressure rise rates. Moreover, the approach has the potential of reducing fuel system cost compared to high pressure (>500bar) gasoline direct injection fuel systems available in the market for GDI SI engines that are used to reduce particulate matter. In this study, a multiple injection strategy was developed using electric heating of the fuel prior to direct fuel injection at engine speed of 1500rpm and load of 12.3bar IMEP.
Technical Paper

Development of a Novel Fuel Injection System (NFIS) for Dimethyl Ether-and Other Clean Alternative Fuels

1997-02-24
970220
A novel, electronically controlled, common rail fuel injection system has been designed and developed by the authors under a contract from the National Renewable Energy Laboratory (NREL). This system was specifically designed for direct injection of liquid dimethyl ether (DME) to achieve ultra-low emissions of NOx & particulate matter from conventional diesel engines. However, the system's basic characteristics also make it suitable for direct injection of ethanol & methanol in compression-ignition engines, and direct injection of liquid propane and gasoline in spark-ignition engines.
X