Refine Your Search

Search Results

Viewing 1 to 13 of 13
Journal Article

A Comparison of Experimental and Modeled Velocity in Gasoline Direct-Injection Sprays with Plume Interaction and Collapse

2017-03-28
2017-01-0837
Modeling plume interaction and collapse for direct-injection gasoline sprays is important because of its impact on fuel-air mixing and engine performance. Nevertheless, the aerodynamic interaction between plumes and the complicated two-phase coupling of the evaporating spray has shown to be notoriously difficult to predict. With the availability of high-speed (100 kHz) Particle Image Velocimetry (PIV) experimental data, we compare velocity field predictions between plumes to observe the full temporal evolution leading up to plume merging and complete spray collapse. The target “Spray G” operating conditions of the Engine Combustion Network (ECN) is the focus of the work, including parametric variations in ambient gas temperature. We apply both LES and RANS spray models in different CFD platforms, outlining features of the spray that are most critical to model in order to predict the correct aerodynamics and fuel-air mixing.
Journal Article

A Progress Review on Soot Experiments and Modeling in the Engine Combustion Network (ECN)

2016-04-05
2016-01-0734
The 4th Workshop of the Engine Combustion Network (ECN) was held September 5-6, 2015 in Kyoto, Japan. This manuscript presents a summary of the progress in experiments and modeling among ECN contributors leading to a better understanding of soot formation under the ECN “Spray A” configuration and some parametric variants. Relevant published and unpublished work from prior ECN workshops is reviewed. Experiments measuring soot particle size and morphology, soot volume fraction (fv), and transient soot mass have been conducted at various international institutions providing target data for improvements to computational models. Multiple modeling contributions using both the Reynolds Averaged Navier-Stokes (RANS) Equations approach and the Large-Eddy Simulation (LES) approach have been submitted. Among these, various chemical mechanisms, soot models, and turbulence-chemistry interaction (TCI) methodologies have been considered.
Journal Article

Assessing the Importance of Radiative Heat Transfer for ECN Spray A Using the Transported PDF Method

2016-04-05
2016-01-0857
The importance of radiative heat transfer on the combustion and soot formation characteristics under nominal ECN Spray A conditions has been studied numerically. The liquid n-dodecane fuel is injected with 1500 bar fuel pressure into the constant volume chamber at different ambient conditions. Radiation from both gas-phase as well as soot particles has been included and assumed as gray. Three different solvers for the radiative transfer equation have been employed: the discrete ordinate method, the spherical-harmonics method and the optically thin assumption. The radiation models have been coupled with the transported probability density function method for turbulent reactive flows and soot, where unresolved turbulent fluctuations in temperature and composition are included and therefore capturing turbulence-chemistry-soot-radiation interactions. Results show that the gas-phase (mostly CO2 ad H2O species) has a higher contribution to the net radiation heat transfer compared to soot.
Technical Paper

Comparison and Standardization of Numerical Approaches for the Prediction of Non-reacting and Reacting Diesel Sprays

2012-04-16
2012-01-1263
The primary objective of the research discussed here was to compare the commercial computational fluid dynamics (CFD) software, CONVERGE, and a prevalent open-source code, OpenFOAM, with regard to their ability to predict spray and combustion characteristics. The high-fidelity data were obtained from the Engine Combustion Network (ECN) at Sandia National Laboratory in a constant-volume combustion vessel under well-defined, controlled conditions. The experiments and simulations were performed by using two diesel surrogate fuels (i.e., n-heptane and n-dodecane) under both non-reacting and reacting conditions. Specifically, ECN data on spray penetration, liquid length, vapor penetration, mixture fraction, ignition delay, and flame lift-off length (LOL) were used to validate both codes. Results indicate that both codes can predict the above experimental characteristics very well.
Technical Paper

Coupled Eulerian Internal Nozzle Flow and Lagrangian Spray Simulations for GDI Systems

2017-03-28
2017-01-0834
An extensive numerical study of two-phase flow inside the nozzle holes and the issuing jets for a multi-hole direct injection gasoline injector is presented. The injector geometry is representative of the Spray G nozzle, an eight-hole counter-bored injector, from the Engine Combustion Network (ECN). Homogeneous Relaxation Model (HRM) coupled with the mixture multiphase approach in the Eulerian framework has been utilized to capture the phase change phenomena inside the nozzle holes. Our previous studies have demonstrated that this approach is capable of capturing the effect of injection transients and thermodynamic conditions in the combustion chamber, by predicting phenomenon such as flash boiling. However, these simulations were expensive, especially if there is significant interest in predicting the spray behavior as well.
Technical Paper

Efficiency and Emissions performance of Multizone Stratified Compression Ignition Using Different Octane Fuels

2013-04-08
2013-01-0263
Advanced combustion systems that simultaneously address PM and NOx while retaining the high efficiency of modern diesel engines, are being developed around the globe. One of the most difficult problems in the area of advanced combustion technology development is the control of combustion initiation and retaining power density. During the past several years, significant progress has been accomplished in reducing emissions of NOx and PM through strategies such as LTC/HCCI/PCCI/PPCI and other advanced combustion processes; however control of ignition and improving power density has suffered to some degree - advanced combustion engines tend to be limited to the 10 bar BMEP range and under. Experimental investigations have been carried out on a light-duty DI multi-cylinder diesel automotive engine. The engine is operated in low temperature combustion (LTC) mode using 93 RON (Research Octane Number) and 74 RON fuel.
Technical Paper

Modeling the Dynamic Coupling of Internal Nozzle Flow and Spray Formation for Gasoline Direct Injection Applications

2018-04-03
2018-01-0314
A numerical study has been carried out to assess the effects of needle movement and internal nozzle flow on spray formation for a multi-hole Gasoline Direct Injection system. The coupling of nozzle flow and spray formation is dynamic in nature and simulations with pragmatic choice of spatial and temporal resolutions are needed to analyze the sprays in a GDI system. The dynamic coupling of nozzle flow and spray formation will be performed using an Eulerian-Lagrangian Spray Atomization (ELSA) approach. In this approach, the liquid fuel will remain in the Eulerian framework while exiting the nozzle, while, depending on local instantaneous liquid concentration in a given cell and amount of liquid in the neighboring cells, part of the liquid mass will be transferred to the Lagrangian framework in the form of Lagrangian parcels.
Journal Article

Numerical Investigation of Two-Phase Flow Evolution of In- and Near-Nozzle Regions of a Gasoline Direct Injection Engine During Needle Transients

2016-04-05
2016-01-0870
This work involves modeling internal and near-nozzle flows of a gasoline direct injection (GDI) nozzle. The Engine Combustion Network (ECN) Spray G condition has been considered for these simulations using the nominal geometry of the Spray G injector. First, best practices for numerical simulation of the two-phase flow evolution inside and the near-nozzle regions of the Spray G injector are presented for the peak needle lift. The mass flow rate prediction for peak needle lift was in reasonable agreement with experimental data available in the ECN database. Liquid plume targeting angle and liquid penetration estimates showed promising agreement with experimental observations. The capability to assess the influence of different thermodynamic conditions on the two-phase flow nature was established by predicting non-flashing and flashing phenomena.
Technical Paper

Numerical Optimization of a Light-Duty Compression Ignition Engine Fuelled With Low-Octane Gasoline

2012-04-16
2012-01-1336
In automotive industry it has been a challenge to retain diesel-like thermal efficiency while maintaining low emissions. Numerous studies have shown significant progress in achieving low emissions through the introduction of common-rail injection systems, multiple injections and exhaust gas recirculation and by using a high octane number fuel, like gasoline, to achieve adequate premixing. On the other hand, low temperature combustion strategies, like HCCI and PCCI, have also shown promising results in terms of reducing both NOx and soot emissions simultaneously. With the increasing capacity of computers, multi-dimensional CFD engine modeling enables a reasonably good prediction of combustion characteristics and pollutant emissions, which is the motivation behind the present research. The current research effort presents an optimization study of light-duty compression ignition engine performance, while meeting the emission regulation targets.
Technical Paper

Numerical Simulation of a Direct-Acting Piezoelectric Prototype Injector Nozzle Flow for Partial Needle Lifts

2017-09-04
2017-24-0101
Actual combustion strategies in internal combustion engines rely on fast and accurate injection systems to be successful. One of the injector designs that has shown good performance over the past years is the direct-acting piezoelectric. This system allows precise control of the injector needle position and hence the injected mass flow rate. Therefore, understanding how nozzle flow characteristics change as function of needle dynamics helps to choose the best lift law in terms of delivered fuel for a determined combustion strategy. Computational fluid dynamics is a useful tool for this task. In this work, nozzle flow of a prototype direct-acting piezoelectric has been simulated by using CONVERGE. Unsteady Reynolds-Averaged Navier-Stokes approach is used to take into account the turbulence. Results are compared with experiments in terms of mass flow rate. The nozzle geometry and needle lift profiles were obtained by means of X-rays in previous works.
Technical Paper

Particle Size and Number Emissions from RCCI with Direct Injections of Two Fuels

2013-04-08
2013-01-1661
Many concepts of premixed diesel combustion at reduced temperatures have been investigated over the last decade as a means to simultaneously decrease engine-out particle and oxide of nitrogen (NO ) emissions. To overcome the trade-off between simultaneously low particle and NO emissions versus high "diesel-like" combustion efficiency, a new dual-fuel technique called Reactivity Controlled Compression Ignition (RCCI) has been researched. In the present study, particle size distributions were measured from RCCI for four gasoline:diesel compositions from 65%:35% to 84%:16%, respectively. Previously, fuel blending (reactivity control) had been carried out by a port fuel injection of the higher volatility fuel and a direct in-cylinder injection of the lower volatility fuel. With a recent mechanical upgrade, it was possible to perform injections of both fuels directly into the combustion chamber.
Technical Paper

Proof-of-Concept Numerical Study for NOx Reduction in Diesel Engines Using Enriched Nitrogen and Enriched Oxygen

2016-09-27
2016-01-8082
The medium and heavy duty vehicle industry has fostered an increase in emissions research with the aim of reducing NOx while maintaining power output and thermal efficiency. This research describes a proof-of-concept numerical study conducted on a Caterpillar single-cylinder research engine. The target of the study is to reduce NOx by taking a unique approach to combustion air handling and utilizing enriched nitrogen and oxygen gas streams provided by Air Separation Membranes. A large set of test cases were initially carried out for closed-cycle situations to determine an appropriate set of operating conditions that are conducive for NOx reduction and gas diffusion properties. Several parameters - experimental and numerical, were considered. Experimental aspects, such as engine RPM, fuel injection pressure, start of injection, spray inclusion angle, and valve timings were considered for the parametric study.
Technical Paper

Study of In-Cylinder Combustion and Multi-Cylinder Light Duty Compression Ignition Engine Performance Using Different RON Fuels at Light Load Conditions

2013-04-08
2013-01-0900
The effects of different Research Octane Number [RON] fuels on a multi-cylinder light-duty compression ignition [CI] engine were investigated at light load conditions. Experiments were conducted on a GM 1.9L 4-cylinder diesel engine at Argonne National Laboratory, using two different fuels, i.e., 75 RON and 93 RON. Emphasis was placed on 5 bar BMEP load, 2000 rev/min engine operation using two different RON fuels, and 2 bar BMEP load operating at 1500 rev/min using 75 RON gasoline fuel. The experiments reveal difficulty in controlling combustion at low load points using the higher RON fuel. In order to explain the experimental trends, simulations were carried out using the KIVA3V-Chemkin Computational Fluid Dynamics [CFD] Code. The numerical results were validated with the experimental results and provided insights about the engine combustion characteristics at different speeds and low load conditions using different fuels.
X