Refine Your Search

Topic

Search Results

Viewing 1 to 20 of 20
Technical Paper

A Study of Engine Bearings Friction Loss Reduction Under Hydrodynamic Lubrication Conditions

2022-03-29
2022-01-0324
The mechanical loss reduction of the bearing reduces the fuel consumption of the engine, which can help realize a sustainable society. Thus, a bearing friction reduction technique has been studied. There have been many studies related to friction-reduction techniques for mixing and boundary lubrication. However, there are few studies on hydrodynamic lubrication, and the main methods have been related to changing the low-viscosity oil and bearing size. In driving passenger cars in urban areas, the lubricant condition of the engine bearings is largely dependent on hydrodynamic lubrication. Therefore, the power loss under this operating condition cannot be ignored. In this study, the reduction of the friction loss under hydrodynamic lubrication was focused. A method for reducing the shear resistance of oil was examined and its effect was confirmed through experiments and calculations.
Technical Paper

A Study on Engine Bearing Wear and Fatigue Using EHL Analysis and Experimental Analysis

1999-05-03
1999-01-1514
The possibility of predicting engine bearing durability by elastohydrodynamic lubrication (EHL) calculations was investigated with the aim of being able to improve durability efficiently without conducting numerous confirmation tests. This study focused on the connecting rod big-end bearing of an automotive engine. The mechanisms of wear and fatigue, which determine bearing durability, were estimated by comparing the results of EHL analysis and experimental data. This comparison showed the possibility of predicting the wear amount and the occurrence of fatigue by calculation.
Journal Article

A Study on Wear Progress of Plain Bearing under Mixed Lubrication Condition

2011-04-12
2011-01-0609
Recently, automotive engines have been operating under harsh conditions of high-power, low viscosity oil and increase of start-stop (e.g. idling stop). In plain bearing used within engine, as oil film thickness decreases, the frequency of direct contacts on the sliding surfaces between the shaft and the bearing are gradually increasing. In fact, the plain bearings for engines would tend to be used under mixed lubrication and the contacts of the surface roughness asperities sometimes occur between the shaft and the bearing. As a result, the bearing wear on the sliding surfaces is accelerated by the contacts of the roughness asperities. In order to predict the bearing performance exactly, it is very important to understand the change progress of the geometric shape of sliding surfaces caused by the wear.
Technical Paper

Combination of Dissimilar Overlay Materials for Engine Bearing Life Extension

2024-04-09
2024-01-2066
Nowadays, Bismuth (Bi) is being applied as an overlay material for engine bearings instead of Lead (Pb) which is an environmentally harmful material. Bi overlay has already been a solid performer in some automotive engine sectors due to its superior load carrying capacity and good robustness characteristic which are necessary to maintain its longevity during the lifetime of engines. The replacement is also seen on relatively larger size engines, such as Trucks and Off-highway heavy duty applications. Basically, these applications require higher power output than passenger cars, and the expected component lifecycle becomes longer. Though Bi has similar material characteristic to traditional Pb, it becomes challenging for the material alone to satisfy these requirements. Polymer overlay is known for its superior anti-wear performance and longer lifetime due to less adhesion against a steel counterpart than metallic materials (included Bi).
Technical Paper

Development of Bearing with Multilayer Bi-Sb Overlay for Automotive Engines

2023-04-11
2023-01-0872
In recent years, the removal of lead (Pb), which is an environmentally hazardous material often used in bearings for automotive engines, has been continuously promoted. Bismuth (Bi) is attracting attention as a substitute for lead, and it is currently being used mainly for passenger cars and trucks as a lead replacement. However, lead has not been replaced for motorcycles where the bearings are exposed to high temperatures at high rotation speeds, and trucks and generators where high loading capacity, long lifetime and good corrosion resistance are required. It has been difficult to achieve both high load and corrosion resistant for a bearing overlay material. The purpose of this development is to improve the corrosion resistance and fatigue resistance of bismuth overlay by developing a bismuth- antimony alloy overlay in which antimony (Sb) is added to the bismuth matrix.
Technical Paper

Development of High Strength Aluminum-Zinc-Silicon Alloy Bearing with Polymer Overlay

2019-04-02
2019-01-0179
Recent automotive engine developments have made great progress in protecting the global environment and in meeting exhaust gas regulations and fuel economy regulations. As a result, engine bearings tend to be used under severe conditions such as higher specific load onto the bearings and with low viscosity of lubricating oil. Aluminum alloy bearings are widely adopted as main bearings and connecting rod bearings in gasoline and diesel engines for passenger cars, and generally Al-Sn-Si alloy bearings without an additional overlay are used. Although these Al-Sn-Si alloy bearings have good anti-seizure properties and excellent running-in-properties, their material strength under high temperature conditions is not sufficient because of the low melting point of Sn phase contained in the alloy, and they could potentially result in damage to the bearing as seizure and fatigue under these conditions. In such cases, Cu-Pb-Sn alloy bearings with lead-based overlay are usually applied.
Technical Paper

Development of Lead Free Copper Based Alloy for Piston Pin Bushing Under Higher Load Engines

2006-04-03
2006-01-1105
As the recent engines are designed for higher performance, piston pin bushing used for small end of connecting rod must endure higher dynamic load and oil temperature conditions. Therefore, the bushing is required higher wear resistance and anti-corrosion. And it is also expected to develop the bushing without lead due to environmental concerns. In this report, lead free copper based bushing alloy was studied. At first, in order to keep the anti-seizure property without lead, we studied the effects of hard particles added into copper based alloy. Second, we evaluated the effect of addition of hard particles on wear resistance and anti-corrosion.
Technical Paper

Development of Lead Free Overlay for Three Layer Bearings of Highly Loaded Engines

2005-04-11
2005-01-1863
Emission control and other restrictions prescribed in the EU's recent EUROIV regulations require automobile manufacturers to decrease NOX and PM (Particulate Matter) in exhaust emissions. Diesel engines in recent years tend to have higher cylinder pressure in pursuit of higher performance and meeting emission regulations. At the same time, under the ELV (End-of-Life Vehicles) regulation, use of lead, which is an environmental pollutant, in automobile parts has become increasingly difficult in recent years. Accordingly, we have developed lead-free overlay for tri-metal copper bearings for applications of highly specific load. We chose a dual-layer structure, bismuth and silver overlay. This type of structure can create fatigue resistance without compromising the two advantages of lead overlay: conformability and anti-seizure property.
Technical Paper

Development of Lead-Free Copper Alloy Bearing Material with Improved Conformability

2015-04-14
2015-01-0520
There has been a requirement for automotive bearings materials to be free of the toxic material lead, in accordance with ELV regulations and from the perspective of environmental problems. Currently, bismuth is used as a replacement for lead in copper alloy based main journal bearings and connecting rod bearings for automotive engines. In recent years, there has been changing to lead-free materials for truck engine bearings. Compared with automotive engines, lots of contaminations in the oil and local contact between the shaft and bearings can occur in truck engines. The ability to tolerate contamination and local contact is therefore required for truck engine bearings. In this development, we find that the addition of 8 mass% bismuth and 1.5 mass% molybdenum carbide particles into copper-tin alloy is effective for improving the ability which allow the contamination and local contacts. The development of above mentioned lead-free copper alloy bearing material is described here.
Technical Paper

Development of Multi-layer Aluminum-Tin-Silicon Alloy Bearing for Automotive Diesel Engine

2003-03-03
2003-01-0050
Recent engine bearings are operating under severe conditions to support such engine requirements as lower fuel consumption, longer life and protection of global environment. On Al-Sn-Si alloy bearings, it has some issue that fatigue may occur on the bearing alloy under severe condition such as in automotive diesel engines. Higher strength of alloy, which allows the fatigue resistance, can be obtained by solid solution treatment at higher temperature in general. But at the same time it makes intermetallic compounds with less bonding strength between intermediate layer and steel backing. A new bearing without lead has been developed by applying the heat treatment of bimetal and adequate intermediate layer for the process, consequently concluded to have the higher fatigue strength, with usual property on Al-Sn-Si alloy bearings.
Technical Paper

Development of New Aluminum-Zinc-Silicon Bearings for Heavy Load Applications in Uprated Engines

1990-02-01
900124
The recent trend toward the compact and light-weight construction of diesel engines with high power output has been imposing higher requirements of fatigue strength and antiseizure characteristics on bearings. In order to meet these requirements, the authors developed a new bearing alloy of higher fatigue strength for use in heavy load engines, through the analysis of the Al-Zn-Si alloy which has high corrosion resistance. Experimental results of this new alloy to study its physical properties and bearing performances indicate that it can be applied to bearings in diesel engines which operate in harsh conditions.
Technical Paper

Development of New Powertrain System for the Global Deployment of Hybrid Vehicles

2023-04-11
2023-01-0479
A new hybrid system has been developed to increase the permissible system weight and raise dynamic performance/system efficiency for the global rollout of Honda's electric vehicles. The powertrain consists of a 2.0L direct injection engine, a Front Drive Unit (FDU) with a built-in traction motor/generator and gear that directly transmit engine torque to the wheels (engine driving gear), a Power Control Unit (PCU) mounted on the FDU, and an Intelligent Power Unit (IPU) mounted under the cargo area. The FDU has a higher RPM (+12%) and higher torque (+6%) traction motor for enhanced launch acceleration performance and maximum vehicle speed settings tailored to regional needs. In addition, a new engine driving gear for low-speed driving has been added to heighten system efficiency by avoiding traction motor driving in low-speed, high-load areas where electrical losses are high, and instead using a driving mode with an engine driving gear (ENGINE MODE).
Technical Paper

Development of Resin Overlay Bearing Material for Recent Automotive Engine

2017-03-28
2017-01-0460
The number of vehicles with engines using idling stop systems and hybrid systems to improve fuel consumption has recently been increasing. However, with such systems the frequent starts and stops of the engine, where the oil film between the bearings and shaft is squeezed out and direct contact between the components is more likely, can result in increased wear of the engine bearings, particularly in the main bearing. Bearings with resin overlays have been shown to display superior resistance to wear from such start-stop cycles. Moreover, cast iron shafts without quenching treatment have also been used in engines for cost reduction. Because the cast shaft has low hardness and unstable surface graphite after abrasive finishing, increase in the wear amount cannot be suppressed by conventional resin overlay in comparison with steel shaft. Therefore, the resin overlay with improved wear resistance achieved by adding hard particles was developed.
Technical Paper

Experimental Study of Bismuth Alloy Overlays for Automotive Engine Bearing

2021-04-06
2021-01-0685
Bismuth has been applied successfully as sliding bearing overlay material in internal combustion engines, where a good combination of sliding properties, mechanical strength and corrosion resistance can be attained. However, environmental pressures driving towards lower emission and higher fuel efficiency are set to raise firing loads above the capability of many state-of-the-art bismuth materials in the market. At the same time, in order to meet increasingly stringent environmental regulations modern engines are adapting to more efficient and economic designs which put bearing materials under ever growing pressure to provide enhanced oxidation resistance and robustness to cope with elevated engine operating temperature and tighter oil clearance.
Technical Paper

Fretting Phenomenon on Outer Surface of Connecting Rod Bearings for Automotive Engines

1993-01-01
931022
Recent automotive engines for high performance vehicles have been designed for higher speeds and outputs. Not only the combustion load but also the inertia force applied on the connecting rod has been increasing. Automotive engines have also become compact and lighter in weight for needs of lower fuel consumption. For these reasons, the rigidity of the connecting rod has been reduced in comparison with the increasing inertia force. As a result, fretting damage may occur between two surfaces of the connecting rod big end bore and the bearing outer surface, causing breakage of the connecting rod itself. Countermeasures for fretting such as a tighter bearing fit ( interference ) and higher rigidity of the connecting rod big end are generally adopted. But the details for these countermeasures can not be easily predicted at the design stage. Rather they are obtained only by durability tests on the actual engines.
Technical Paper

High Porosity Substrates for Fast-Light-Off Applications

2015-04-14
2015-01-1009
Regulations that limit emissions of pollutants from gasoline-powered cars and trucks continue to tighten. More than 75% of emissions through an FTP-75 regulatory test are released in the first few seconds after cold-start. A factor that controls the time to catalytic light-off is the heat capacity of the catalytic converter substrate. Historically, substrates with thinner walls and lower heat capacity have been developed to improve cold-start performance. Another approach is to increase porosity of the substrate. A new material and process technology has been developed to significantly raise the porosity of thin wall substrates (2-3 mil) from 27-35% to 55% while maintaining strength. The heat capacity of the material is 30-38% lower than existing substrates. The reduction in substrate heat capacity enables faster thermal response and lower tailpipe emissions. The reliance on costly precious metals in the washcoat is demonstrated to be lessened.
Technical Paper

Parametric Study for Design Factors on Engine Bearings by using TEHL Analysis

2002-03-04
2002-01-0298
As the downsizing and lightening of the engine are designed, the compact and lightweight of the housing should be required. Therefore, both the engine bearing and the housing are greatly deformed under the severe condition, and a heat generation due to the friction loss increases in the bearings. In this study, on the connecting rod bearing for the automotive engine, the bearing design factors as the oil inlet temperature, the rotational speed, the bearing clearance and the bearing length, are changed as a parameter. The influences of the design factors for the performance of the connecting rod bearing are investigated by using TEHL analysis (Thermo ElastoHydrodynamic Lubrication theory analysis).
Technical Paper

The Method to Predict the Vibration Transfer Function of Hydraulic Engine Mount on a Vehicle

2016-04-05
2016-01-1321
The CAE method to predict the vibration transfer function of the hydraulic engine mount on a vehicle with sufficient precision and calculation time without prototype cars was developed. The transfer function is given in the following steps. First, rubber deformation form under the power train weight loaded must be predicted. It’s obtained by using a reduction model of an engine mount, as a unit, which doesn’t have its fluid sealed inside, with the technique to get the static spring characteristics in a non-linear relationship. Second, Young’s modulus and structural damping coefficient for the deformed rubber must be given. As for these characteristics, ignoring the relations between these values and strain, the constant values are used. This considerably reduces computation time and model size. Next, the reduction model and the fluid model have must be combined to express actual product. In this step, coupled analysis for fluid and structure is used.
Technical Paper

Theoretical Analysis of Engine Bearing Considering Both Elastic Deformation and Oil Film Temperature Distribution

2001-03-05
2001-01-1076
Recently, the bearing performances have been analyzed by elastohydrodynamic lubrication theory (EHL). However, the oil film temperature is constant within a bearing clearance on this theory. As modern automotive engines are running at high rotational speed, the change of the oil film temperature is remarkable within a bearing clearance. The bearing performances are influenced by the distribution of the oil film temperature. Therefore it is also necessary for the analysis of the bearing performances to consider the effect of the oil film temperature distribution by thermo elastohydrodynamic lubrication theory (TEHL). In this study, the effects of the bearing performances are investigated on connecting rod bearing in general gasoline engine by TEHL. Furthermore, oil film thickness, oil film pressure and oil film temperature of TEHL results are compared with those of EHL.
Technical Paper

Transient Control Technology of Spark Assisted HCCI

2015-04-14
2015-01-0880
Amidst the rising demand to reduce CO2 and other greenhouse gas emissions in recent years, gasoline homogeneous-charge compression ignition (HCCI) has gained attention as a technology that achieves both low NOx emissions and high thermal efficiency by means of lean combustion. However, gasoline HCCI has low robustness toward intracylinder temperature variations, therefore the problems of knocking and misfiring tend to occur during transient operation. The authors verified the transient operation control of HCCI by using a 4-stroke natural aspiration (NA) gasoline engine provided with direct injection (DI) and a variable valve timing and a lift electronic control system (VTEC) for intake air and exhaust optimized for HCCI combustion. This report describes stoichiometry spark ignition (SI) to which external exhaust gas recirculation (EGR) was introduced, HCCI ignition switch control, and changes in the load and number of engine revolutions in the HCCI region.
X