Refine Your Search

Search Results

Viewing 1 to 4 of 4
Journal Article

A Transport Equation Residual Model Incorporating Refined G-Equation and Detailed Chemical Kinetics Combustion Models

2008-10-06
2008-01-2391
A transport equation residual model incorporating refined G-equation and detailed chemical kinetics combustion models has been developed and implemented in the ERC KIVA-3V release2 code for Gasoline Direct Injection (GDI) engine simulations for better predictions of flame propagation. In the transport equation residual model a fictitious species concept is introduced to account for the residual gases in the cylinder, which have a great effect on the laminar flame speed. The residual gases include CO2, H2O and N2 remaining from the previous engine cycle or introduced using EGR. This pseudo species is described by a transport equation. The transport equation residual model differentiates between CO2 and H2O from the previous engine cycle or EGR and that which is from the combustion products of the current engine cycle.
Technical Paper

Application of a New Turbulent Flame Speed Combustion Model on Burn Rate Simulation of Spark Ignition Engines

2016-04-05
2016-01-0588
This work presents turbulent premixed combustion modeling in spark ignition engines using G-equation based turbulent combustion model. In present study, a turbulent flame speed expression proposed and validated in recent years by two co-authors of this paper is applied to the combustion simulation of spark ignition engines. This turbulent flame speed expression has no adjustable parameters and its constants are closely tied to the physics of scalar mixing at small scales. Based on this flame speed expression, a minor modification is introduced in this paper considering the fact that the turbulent flame speed changes to laminar flame speed if there is no turbulence. This modified turbulent flame speed expression is implemented into Ford in-house CFD code MESIM (multi-dimensional engine simulation), and is validated extensively.
Journal Article

Improvements to Combustion Models for Modeling Spark-Ignition Engines Using the G-equation and Detailed Chemical Kinetics

2008-06-23
2008-01-1634
Improvements to combustion models for modeling spark ignition engines using the G-equation flame propagation model and detailed chemical kinetics have been performed. The improvements include revision of a PRF chemistry mechanism, precise calculation of “primary heat release” based on the sub-grid scale unburned/burnt volumes of flame-containing cells, modeling flame front quenching in highly stratified mixtures, introduction of a Damkohler model for assessing the combustion regime of flame-containing cells, and a better method of modeling the effects of the local residual value on the burning velocity. The validation of the revised PRF mechanism shows that the calculated ignition delay matches shock tube data very well. The improvements to the “primary heat release” model based on the cell unburned/burnt volumes more precisely consider the chemical kinetics heat release in unburned regions, and thus are thought to be physically reasonable.
Technical Paper

Integration of a Continuous Multi-Component Fuel Evaporation Model with an Improved G-Equation Combustion and Detailed Chemical Kinetics Model with Application to GDI Engines

2009-04-20
2009-01-0722
A continuous multi-component fuel evaporation model has been integrated with an improved G-equation combustion and detailed chemical kinetics model. The integrated code has been successfully used to simulate a gasoline direct injection engine. In the multi-component fuel model, the theory of continuous thermodynamics is used to model the properties and composition of multi-component fuels such as gasoline. In the improved G-equation combustion model a flamelet approach based on the G-equation is used that considers multi-component fuel effects. To precisely calculate the local and instantaneous residual which has a great effect on the laminar flame speed, a “transport equation residual” model is used. A Damkohler number criterion is used to determine the combustion mode in flame containing cells.
X