Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

248mm Elliptical Torque Converter from DaimlerChrysler Corporation

2007-04-16
2007-01-0241
The need for efficient space utilization has provided a framework for the design of a 248mm family of torque converters that supports a wide choice of engine and transmission combinations. The axial length of the part and its weight have been substantially reduced while the performance range has been broadened without degradation of efficiency. The new converter operates in an expanded slipping clutch mode. It significantly contributes to the performance and fuel economy improvements of related vehicles. To meet the cost target, the comprehensive lineup and the resulting complexity have required a high level of component interchangeability. During the design phase, the manufacturing core competencies were scrutinized and process redundancies eliminated, both resulting in optimization of material selection and applicable technology.
Technical Paper

62TE 6-Speed Transaxle for Chrysler Group

2007-04-16
2007-01-1097
A new six-speed transaxle has been introduced by the Chrysler Group of DaimlerChrysler AG. Along with the six forward ratios in the normal upshift sequence, this transaxle features a seventh forward ratio used primarily in a specific downshift sequence. A significant technical challenge in this design was the control of so-called double-swap shifts, the exchange of two shift elements for two other shift elements. In the case at hand, one of the elements is a freewheel. A unique solution is discussed for successful control of double-swap shifts. The new design replaces a four-speed transaxle but makes use of a large percentage of parts and processes from the four-speed design. This approach enabled the new transaxle to reach production in three years from concept. The new transaxle, referred to as the 62TE, has substantially improved performance and passing maneuvers coupled with a new 4.0L high output engine for which the 62TE was developed.
Technical Paper

A Failure Criterion for Stretch Bendability of Advanced High Strength Steels

2006-04-03
2006-01-0349
Studies in an Angular Stretch Bend Test (ASBT) have demonstrated that the failure location moves from the side wall to punch nose area. This occurs as the R/T ratio decreases below a certain limit and applies to most low carbon steels with the exception of Dual Phase (DP) steels. Such behavior in DP steels indicates that bending effects have a severe impact on the formability of DP materials. Therefore, the traditional criterion using the forming limit curve (FLC) is not suitable to assess the formability at punch radius areas for DP steels due in part to its uniqueness of unconventional microstructures. In this paper, a new failure criterion, ‘Bending-modified’ FLC (BFLC), is proposed by extending the traditional FLC using the “Stretch Bendability Index” (SBI) concept for the stretch bendability assessment.
Technical Paper

A Fully Variable Mechanical Valvetrain with a Simple Moving Pivot

2005-04-11
2005-01-0770
A continuously variable lift, duration and phase mechanical lift mechanism is described, as applied to the intake valvetrain of a SOHC, 4-valve per cylinder, four-cylinder production engine. Improvements in fuel economy were sought by reduction of pumping losses and improved charge preparation, and optimization of WOT torque was attempted by variation of intake valve closing angle. Adjustment of the mechanism is achieved by movement of the pivot shaft for the rocker arms. The relationship between lift, duration and phase is predetermined at the design stage, and is fixed during operation. There is considerable design flexibility to achieve the envelope of lift curves deemed desirable. The operation of the mechanism is described, as are the development procedure, testing with fixed cams, some cycle simulation, friction testing on a separate rig and dyno testing results for idle, part load and WOT.
Technical Paper

A Model for On-Line Monitoring of In-Cylinder Residual Gas Fraction (RGF) and Mass Flowrate in Gasoline Engines

2006-04-03
2006-01-0656
In a gasoline engine, the unswept in-cylinder residual gas and introduction of external EGR is one of the important means of controlling engine raw NOx emissions and improving part load fuel economy via reduction of pumping losses. Since the trapped in-cylinder Residual Gas Fraction (RGF, comprised of both internal, and external) significantly affects the combustion process, on-line diagnosis and monitoring of in-cylinder RGF is very important to the understanding of the in-cylinder dilution condition. This is critical during the combustion system development testing and calibration processes. However, on-line measurement of in-cylinder RGF is difficult and requires an expensive exhaust gas analyzer, making it impractical for every application. Other existing methods, based on measured intake and exhaust pressures (steady state or dynamic traces) to calculate gas mass flowrate across the cylinder ports, provide a fast and economical solution to this problem.
Technical Paper

A New Calibration System for the Daimler Chrysler Medium and Heavy Duty Diesel Engines - An Exercise in Methods & Tools

2001-03-05
2001-01-1222
High demands in fuel consumption, efficiency, and low emissions lead to complex control functions for current and future diesel engine management systems. Great effort is necessary for their optimal calibration. At the same time, and particularly for cost reasons, many variants exist on one individual type of diesel engine management system. Not only is it used for several base engines, but these engines are also used in different environments and for different tasks. For optimal deployment, their calibration status must also be optimized individually. Furthermore, the demand for shorter development cycles and enhanced quality lead to a catalogue of new requirements for the calibration process and the affiliated tool. A new calibration system was developed, which optimally reflects the new demands.
Technical Paper

A Semi-Empirical Model for Fast Residual Gas Fraction Estimation in Gasoline Engines

2006-10-16
2006-01-3236
Accurate accounting for fresh charge (fuel and air) along with trapped RGF is essential for the subsequent thermodynamic analysis of combustion in gasoline engines as well as for on-line and real-time quantification as relevant to engine calibration and control. Cost and complexity of such techniques renders direct measurement of RGF impractical for running engines. In this paper, an empirically-based approach is proposed for on-line RGF, based on an existing semi-empirical model [1]. The model developed expands the range over which the semi-empirical model is valid and further improves its accuracy. The model was rigorously validated against a well correlated GT-POWER model as well as results from 1D gas exchange model [2]. Overall, using this model, RGF estimation error was within ∼1.5% for a wide range of engine operating conditions. The model will be implemented in Dyno development and calibration at Chrysler Group.
Technical Paper

A Simple Approach to Selecting Automotive Body-in-White Primary-Structural Materials

2002-07-09
2002-01-2050
A simple strategy for building lightweight automobile body-in-whites (BIWs) is developed and discussed herein. Because cost is a critical factor, expensive advanced materials, such as carbon fiber composites and magnesium, must only be used where they will be most effective. Constitutive laws for mass savings under various loading conditions indicate that these materials afford greater opportunity for mass saving when used in bending, buckling or torsion than in tensile, shear or compression. Consequently, it is recommended that these advanced materials be used in BIW components subject to bending and torsion such as rails, sills, “A-B-C” pillars, etc. Furthermore, BIW components primarily subject to tension, compression, or shear, such as floor pans, roofs, shock towers, etc., should be made from lower cost steel. Recommendations for future research that are consistent with this strategy are included.
Technical Paper

Aftertreatment Catalyst Design for the New DaimlerChrysler Supercharged 4-Cylinder Engine with Direct Gasoline Injection

2003-03-03
2003-01-1161
The launching of direct injection gasoline engines is currently one of the major challenges for the automotive industry in the European Union. Besides its potential for a notable reduction of fuel consumption, the engine with direct gasoline injection also offers increased power during stoichiometric and stratified operation. These advantages will most probably lead to a significant market potential of the direct injection concept in the near future. In order to meet the increasingly more stringent European emission levels (EURO IV), new strategies for the exhaust gas aftertreatment are required. The most promising technique developed in recent years, especially for NOx conversion in lean exhaust gases, is the so-called NOx storage catalyst.
Technical Paper

An Advanced Diesel Fuels Test Program

2001-03-05
2001-01-0150
This paper reports on DaimlerChrysler's participation in the Ad Hoc Diesel Fuels Test Program. This program was initiated by the U.S. Department of Energy and included major U.S. auto makers, major U.S. oil companies, and the Department of Energy. The purpose of this program was to identify diesel fuels and fuel properties that could facilitate the successful use of compression ignition engines in passenger cars and light-duty trucks in the United States at Tier 2 and LEV II tailpipe emissions standards. This portion of the program focused on minimizing engine-out particulates and NOx by using selected fuels, (not a matrix of fuel properties,) in steady state dynamometer tests on a modern, direct injection, common rail diesel engine.
Technical Paper

Anti-Shudder Property of Automatic Transmission Fluids - A Study by the International Lubricants Standardization and Approval Committee (ILSAC) ATF Subcommittee

2000-06-19
2000-01-1870
In recent years, the slip lock-up mechanism has been adopted widely, because of its fuel efficiency and its ability to improve NVH. This necessitates that the automatic transmission fluid (ATF) used in automatic transmissions with slip lock-up clutches requires anti-shudder performance characteristics. The test methods used to evaluate the anti-shudder performance of an ATF can be classified roughly into two types. One is specified to measure whether a μ-V slope of the ATF is positive or negative, the other is the evaluation of the shudder occurrence in the practical vehicle. The former are μ-V property tests from MERCON® V, ATF+4®, and JASO M349-98, the latter is the vehicle test from DEXRON®-III. Additionally, in the evaluation of the μ-V property, there are two tests using the modified SAE No.2 friction machine and the modified low velocity friction apparatus (LVFA).
Technical Paper

Cam-Phasing Optimization Using Artificial Neural Networks as Surrogate Models-Maximizing Torque Output

2005-10-24
2005-01-3757
Variable Valve Actuation (VVA) technology provides high potential in achieving high performance, low fuel consumption and pollutant reduction. However, more degrees of freedom impose a big challenge for engine characterization and calibration. In this study, a simulation based approach and optimization framework is proposed to optimize the setpoints of multiple independent control variables. Since solving an optimization problem typically requires hundreds of function evaluations, a direct use of the high-fidelity simulation tool leads to the unbearably long computational time. Hence, the Artificial Neural Networks (ANN) are trained with high-fidelity simulation results and used as surrogate models, representing engine's response to different control variable combinations with greatly reduced computational time. To demonstrate the proposed methodology, the cam-phasing strategy at Wide Open Throttle (WOT) is optimized for a dual-independent Variable Valve Timing (VVT) engine.
Technical Paper

Cam-phasing Optimization Using Artificial Neural Networks as Surrogate Models-Fuel Consumption and NOx Emissions

2006-04-03
2006-01-1512
Cam-phasing is increasingly considered as a feasible Variable Valve Timing (VVT) technology for production engines. Additional independent control variables in a dual-independent VVT engine increase the complexity of the system, and achieving its full benefit depends critically on devising an optimum control strategy. A traditional approach relying on hardware experiments to generate set-point maps for all independent control variables leads to an exponential increase in the number of required tests and prohibitive cost. Instead, this work formulates the task of defining actuator set-points as an optimization problem. In our previous study, an optimization framework was developed and demonstrated with the objective of maximizing torque at full load. This study extends the technique and uses the optimization framework to minimize fuel consumption of a VVT engine at part load.
Technical Paper

Catalyst Design for High Performance Engines Capable to Fulfill Future Legislation

2004-03-08
2004-01-1276
To meet future emission levels the industry is trying to reduce tailpipe emissions by both, engine measures and the development of novel aftertreatment concepts. The present study focuses on a joint development of aftertreatment concepts for gasoline engines that are optimized in terms of the exhaust system design, the catalyst technology and the system costs. The best performing system contains a close-coupled catalyst double brick arrangement using a new high thermal stable catalyst technology with low precious metal loading. This system also shows an increased tolerance against catalyst poisoning by engine oil.
Technical Paper

Catalyst Temperature Rise during Deceleration with Fuel Cut

2006-04-03
2006-01-0411
Automotive catalysts close coupled to gasoline engines operated under high load are frequently subjected to bed temperatures well above 950 °C. Upon deceleration engine fuel cut is usually applied for the sake of fuel economy, robustness and driveability. Even though catalyst inlet gas temperatures drop down immediately after fuel cut - catalyst bed temperatures may rise significantly. Sources for catalyst temperature rise upon deceleration with fuel cut are discussed in this contribution.
Technical Paper

Chrysler 45RFE a New Generation Light Truck Automatic Transmission

1999-03-01
1999-01-1260
The 45RFE is a new generation electronically controlled rear wheel drive automatic transmission. It employs real-time feedback, closed-loop modulation of shift functions to achieve outstanding shift quality and to meet demanding durability goals. It uses no shift valves; all friction element applications are effected with high-flow electro-hydraulic solenoid valves. A unique gear train arrangement of three planetary carriers allows all sun gears and annulus gears to have the same number of teeth respectively and use a common pinion gear in all carriers, resulting in significant manufacturing simplification. The three-planetary system is designed for four forward ratios of 3.00, 1.67, 1.00 and 0.75 and one reverse gear ratio equal to the low gear ratio. A fifth ratio of 1.50 is used only in certain kick-down shift sequences for highway passing. A sixth forward ratio, an additional overdrive ratio of 0.67, is available in the hardware.
Technical Paper

Chrysler 45RFE: A New Generation Real-Time Electronic Control RWD Automatic Transmission

1999-03-01
1999-01-0755
The 45RFE is a new generation electronically controlled rear wheel drive transmission. It employs real-time feedback, closed-loop modulation of shift functions to achieve excellence in shift quality and to meet severe durability goals. The 45RFE uses no shift valves; all friction element applications are effected with high-flow electro-hydraulic solenoid valves. A unique gear train arrangement of three planetary carriers allows all sun and annulus gears to have identical numbers of teeth and to use common pinion gears in all carriers. This results in substantial manufacturing simplification. The three-planetary system is designed for four forward ratios of 3.00, 1.67, 1.00 and 0.75 and one reverse gear ratio equal to the low gear ratio. A fifth ratio of 1.50 is used mainly in certain kick-down shift sequences for highway passing. A sixth forward ratio, an additional overdrive ratio of 0.67, is available in the hardware.
Technical Paper

Current Status and Prospects for Gasoline Engine Emission Control Technology - Paving the Way for Minimal Emissions

2000-03-06
2000-01-0856
The background for the development activities of the motor vehicle industry is strongly influenced by lawmakers, with engine development, in particular, coming under increasing pressure from the requirements of emissions legislation. Demands for CO2 reduction and thus corresponding savings in consumption contrast with regulations which call for compliance with extremely low emission levels, featuring the extreme of zero tailpipe emissions, and alternative low emission levels which make accurate measurement a problem even with current analysis technology. An example of such requirements are the SULEV limits of California law. These standards have given rise to a wide variety of emission control concepts, each of which, however, has certain limitations in its application. In the context of this general setting, the paper shows that the phase directly subsequent to cold start should be focused upon if these ambitious targets are to be reached.
Technical Paper

DaimlerChrysler's New 1.6L, Multi-Valve 4-Cylinder Engine Series

2001-03-05
2001-01-0330
This paper introduces the new 1.6L engine family, designed and developed by the Chrysler group of DaimlerChrysler Corporation in cooperation with BMW. An overview of the engine's design features is provided, with a detailed review of the performance development process with emphasis on airflow, combustion, thermal management and friction. This information is presented, to provide an understanding of how the engine simultaneously achieves outstanding levels of torque, power, fuel consumption, emissions and idle stability. The use of analytical tools such as Computational Fluid Dynamics (CFD) and Finite Element Analysis (FEA) in the optimization of the engine is shown.
Technical Paper

Development of an Engine Stop/Start at Idle System

2005-04-11
2005-01-0069
A project was undertaken to demonstrate an engine stop/start at idle system utilizing a 12 volt Belt driven Starter Generator (BSG). The system was developed on a production four cylinder vehicle to determine emissions, driveability, and fuel economy impact.
X