Refine Your Search

Topic

Author

Search Results

Technical Paper

A CAE Based Stochastic Assessment and Improvement of Vehicle NCAP Response

2004-03-08
2004-01-0458
One of the primary issues in the interpretation of vehicle impact response data, observed from vehicle crash test events, is coping with variability. This vehicle response inconsistency generally causes test results to be unpredictable and makes CAE test validation work difficult as well. This paper, considering the uncertain characteristics of vehicle impact events, has implemented a stochastic assessment of vehicle NCAP response variation through a CAE vehicle impact model, and it has accomplished the three primary study objectives as stated follows: 1) Identify the response variation causing factors stochastically from various structural and environmental factor candidates and quantify the degree of their influences on crash response, 2) Develop a methodology for interpreting the significance of the factor effects in conjunction with vehicle impact mechanics and physics, and 3) Implement a stochastic improvement of the vehicle NCAP responses and their repeatability
Technical Paper

Active Safety of Commercial Vehicles - The European Status

2000-12-01
2000-01-3154
The increase of active safety will demand more and more electronic intelligence, if a drastic optimization of conventional systems is not possible any more. Starting from today's mechatronic systems, the trend leads via tomorrow's smart electronic systems to the future electronic networking of all intelligent vehicle systems. The paper describes the present status of these systems in Europe and the possibilities of increasing the active safety by using electronic intelligence.
Technical Paper

Bionic Optimization of Air-Guiding Systems

2004-03-08
2004-01-1377
Topology optimization in structural analysis is known for many years. In the presented procedure, “topology optimization” is used for computational fluid dynamics (CFD) for the first time. It offers the possibility of a very fast optimization process under utilization of the physical information in the flow field instead of using optimization algorithms like for example evolution strategies or gradient based methods. This enables the design engineer to generate in a first layout air guiding systems with low pressure drop in a fast and easy manner, which can than be improved further due to constraints of styling or production requirements. This procedure has been tested with many examples and shows promising results with a reduction in pressure loss up to 60% compared to a duct designed in CAD in the traditional way.
Technical Paper

CAE Fatigue Prediction of Fuel Tank Straps using Proving Ground Loads

2005-04-11
2005-01-1405
The durability of fuel tank straps is essential for vehicle safety. Extensive physical tests are conducted to verify designs for durability. Due to the complexity of the loads and the fuel-to-tank interaction, computer-aided-engineering (CAE) simulation has had limited application in this area. This paper presents a CAE method for fuel tank strap durability prediction. It discusses the analytical loads, modeling of fuel-to-tank interaction, dynamic analysis methods, and fatigue analysis methods. Analysis results are compared to physical test results. This method can be used in either a fuel-tank-system model or a full vehicle model. It can give directional design guidance for fuel tank strap durability in the early stages of product development to reduce vehicle development costs.
Technical Paper

Chrysler 45RFE a New Generation Light Truck Automatic Transmission

1999-03-01
1999-01-1260
The 45RFE is a new generation electronically controlled rear wheel drive automatic transmission. It employs real-time feedback, closed-loop modulation of shift functions to achieve outstanding shift quality and to meet demanding durability goals. It uses no shift valves; all friction element applications are effected with high-flow electro-hydraulic solenoid valves. A unique gear train arrangement of three planetary carriers allows all sun gears and annulus gears to have the same number of teeth respectively and use a common pinion gear in all carriers, resulting in significant manufacturing simplification. The three-planetary system is designed for four forward ratios of 3.00, 1.67, 1.00 and 0.75 and one reverse gear ratio equal to the low gear ratio. A fifth ratio of 1.50 is used only in certain kick-down shift sequences for highway passing. A sixth forward ratio, an additional overdrive ratio of 0.67, is available in the hardware.
Technical Paper

Computer Aided Simulations in Machining Applications

2005-04-11
2005-01-0518
Computer applications have been widely used to assist product design. The successes and sophistication of computer aided engineering (CAE) techniques are respectfully recognized in this field. CAE applications in the manufacturing area however are still developing, although the manufacturing community is increasingly starting to pay attentions to computer simulations in its daily workings. This paper will briefly introduce some of these applications and promote awareness of computer simulations in manufacturing area. It contains four main sections: finite element analysis (FEA) in machining fixture design, FEA applications in component assembly, machining process simulations and machining vibrations in the milling operation. Each section comes with a practical case study, potential benefits are identified and conclusions are presented by using an integrated design and analysis approach.
Technical Paper

Computer-Aided Vehicle Design and Packaging Using Standard Naming Design Methodology

2003-03-03
2003-01-1302
Vehicle design and packaging is a repetitive and tedious process that involves frequent engineering and design changes. To improve design efficiency, a standard naming vehicle design methodology is proposed in this paper. For the geometric or the functional object used in the vehicle context, a standard name is assigned and also used as a unique object feature through its life cycle. With the proposed standard naming design methodology, the engineering knowledge can be efficiently embedded into the CAD design, and hence, vehicle design can be executed in a more automated fashion. Work case of the standard naming design methodology is illustrated by a vehicle design and packaging application using CATIA V5.
Technical Paper

Effects of Different Vehicle Parameters on Car to Car Frontal Crash Fatality Risk Estimated through a Parameterized Model

2006-04-03
2006-01-1134
For the purposes of analyzing and understanding the general effects of a set of different vehicle attributes on overall crash outcome a fleet model is used. It represents the impact response, in a one-dimensional sense, of two vehicle frontal crashes, across the frontal crash velocity spectrum. The parameters studied are vehicle mass, stiffness, intrusion, pulse shape and seatbelt usage. The vehicle impact response parameters are obtained from the NCAP tests. The fatality risk characterization, as a function of the seatbelt use and vehicle velocity, is obtained from the NASS database. The fatality risk is further mapped into average acceleration to allow for evaluation of the different vehicle impact response parameters. The results indicate that the effects of all the parameters are interconnected and none of them is independent. For example, the effect of vehicle mass on fatality risk depends on seatbelt use, vehicle stiffness, available crush, intrusion and pulse shape.
Technical Paper

Heavy Truck Frontal Crash Protection System Development

2007-10-30
2007-01-4289
Heavy trucks are produced with a great variety of vehicle configurations, operate over a wide range of gross vehicle weight and sometimes function in extreme duty environments. Frontal crashes of heavy trucks can pose a threat to truck occupants when the vehicle strikes another large object such as bridge works, large natural features or another heavy-duty vehicle. Investigations of heavy truck frontal crashes indicate that the factors listed above all affect the outcome for the driver and the resulting damage to the truck Recently, a new chassis was introduced for on-highway heavy truck models that feature frontal airbag occupant protection. This introduction presented an opportunity to incorporate the knowledge gained from crash investigation into the process for developing the crash sensor's parameter settings.
Technical Paper

In Vehicle Exhaust Mount Load Measurement and Calculation

2006-04-03
2006-01-1258
Exhaust durability is an important measure of quality, which can be predicted using CAE with accurate mount loads. This paper proposes an innovative method to calculate these loads from measured mount accelerations. A Chrysler vehicle was instrumented with accelerometers at both ends of its four exhaust mounts. The vehicle was tested at various durability routes or events at DaimlerChrysler Proving Grounds. These measured accelerations were integrated to obtain their velocities and displacements. The differences in velocities and displacements at each mount were multiplied by its damping and stiffness rates to obtain the mount load. The calculation was conducted for all three translational directions and for all events. The calculated mount loads are shown within reasonable range. Along with CAE, it is suggested to explore this method for exhaust durability development.
Technical Paper

Intelligent Braking Management for Commercial Vehicles

2000-12-01
2000-01-3156
The development of electronic intelligence and the continually increasing intensive knowledge of driving dynamics make it possible nowadays to conceive intelligent vehicle systems and to make such systems available for series production, which are capable of substantially enhancing the active safety of commercial vehicles. Through the implementation of advanced subsystems, which can be integrated as software packages into the basic electronic braking system, it will be possible to expand the possibilities of introducing assistance systems, which are capable of both, helping and relieving the driver from stress in critical situations. The driver will be relieved of all duties which could divert his attention or cause severe stress. As a consequence, the active safety of commercial vehicles will be considerably increased.
Technical Paper

LS-DYNA 3D Interface Component Analysis to Predict FMVSS 208 Occupant Responses

2003-03-03
2003-01-1294
Today's interior systems engineer has been challenged with providing cost-effective instrument panel design solutions to meet NHTSA's new FMVSS 208 front crash regulations. Automotive manufacturers are in continuous search of newer methods and techniques to reduce prototype tests and cost. Analytical methods of predicting occupant and structural behavior using computer-aided engineering (CAE) analysis has been in place for quite some time. With the new FMVSS 208 regulations requiring both 5th and 50th percentile occupant testing, CAE analysis of predicting occupant response has become increasingly important. The CAE analyst is challenged with representing the barrier test condition, which involves the structure and the occupant moving at velocities of 25, 30 and 35 mph. Representing the cab kinematics in high-speed impacts is crucial, since capturing the vehicle intrusion and pitching should be made part of the input variables.
Technical Paper

Large Scale High Speed Dynamic Crush Tests Using Two Sleds

2005-04-11
2005-01-1418
It is often necessary to dynamically test a big vehicle part such as a rail tip at component level in high speed. Such a big part can be crush tested dynamically using two sled carriers. The methodology is shown and discussed here, and equations are developed to help determine required parameters such as sled velocity and weights. Test results using a truck rail tip are shown and compared to full vehicle test results for correlation.
Technical Paper

Light Truck Frame Joint Stiffness Study

2003-03-03
2003-01-0241
Truck frame structural performance of body on frame vehicles is greatly affected by crossmember and joint design. While the structural characteristics of these joints vary widely, there is no known tool currently in use that quickly predicts joint stiffness early in the design cycle. This paper will describe a process used to evaluate the structural stiffness of frame joints based on research of existing procedures and implementation of newly developed methods. Results of five different joint tests selected from current production body-on-frame vehicles will be reported. Correlation between finite element analysis and test results will be shown. Three samples of each joint were tested and the sample variation will be shown. After physical and analytical testing was completed, a Design of Experiments approach was implemented to evaluate the sensitivity of joints with respect to gauge and shape modification.
Technical Paper

Lightweight Magnesium Intensive Body Structure

2006-04-03
2006-01-0523
This paper describes a lightweight magnesium intensive automobile body structure concept developed at DaimlerChrysler to support a high fuel-efficiency vehicle project. This body structure resulted in more than 40% weight reduction over a conventional steel structure while achieving significantly improved structural performance as evaluated through CAE simulations. A business case analysis was conducted and showed promising results. One concept vehicle was built for the purpose of demonstrating concept feasibility. The paper also identifies areas for further development to enable such a vehicle to become a production reality at a later time.
Technical Paper

Modal Overlap at Low Frequencies - A Stochastic Approach for Vehicle System Modal Management

2003-05-05
2003-01-1612
In the early stages of a vehicle program, it is a common practice to set target ranges for the global body, suspension and powertrain modes. This modal management process allows engineers to avoid potential noise and vibration problems stemming from strong overlap of major global modes. Before the first prototype hardware is built, finite element models of the body, suspension and powertrain are usually exercised to compare predicted versus targeted ranges of the major system modes in the form of a modal management chart. However, uncertainty associated with the design parameters, manufacturing process and other sources can lead to a major departure from the design intent when the first hardware prototype is built. In this study, a first order reliability method is used to predict variance of the eigen values due to parameter uncertainties. This allows the CAE engineers to add a “three sigma” bound on the eigen values reported in the modal management chart.
Technical Paper

Multi-Disciplinary Aerodynamics Analysis for Vehicles: Application of External Flow Simulations to Aerodynamics, Aeroacoustics and Thermal Management of a Pickup Truck

2007-04-16
2007-01-0100
During the design process for a vehicle, the CAD surface geometry becomes available at an early stage so that numerical assessment of aerodynamic performance may accompany the design of the vehicle's shape. Accurate prediction requires open grille models with detailed underhood and underbody geometry with a high level of detail on the upper body surface, such as moldings, trim and parting lines. These details are also needed for aeroacoustics simulations to compute wall-pressure fluctuations, and for thermal management simulations to compute underhood cooling, surface temperatures and heat exchanger effectiveness. This paper presents the results of a significant effort to capitalize on the investment required to build a detailed virtual model of a pickup truck in order to simultaneously assess performance factors for aerodynamics, aeroacoustics and thermal management.
Technical Paper

Optimization of Damping Treatment for Structure Borne Noise Reduction

2003-05-05
2003-01-1592
In automotive industry, all passenger vehicles are treated with damping materials to reduce structure borne noise. The effectiveness of damping treatments depends upon design parameters such as choice of damping materials, locations and size of the treatment. This paper proposes a CAE (Computer Aided Engineering) methodology based on finite element analysis to optimize damping treatments. The developed method uses modal strain-energy information of bare structural panels to identify flexible regions, which in turn facilitates optimization of damping treatments with respect to location and size. The efficacy of the method is demonstrated by optimizing damping treatment for a full-size pick-up truck. Moreover, simulated road noise performances of the truck with and without damping treatments are compared, which show the benefits of applying damping treatment.
Technical Paper

Powernet Simulation as a Tool for the Development of a Highly Reliable Energy Supply for Safety Relevant Control Systems in X-By-Wire Vessels in the EU SPARC Project

2006-04-03
2006-01-0115
The EU SPARC Project (Secure Propelled Vehicle with Advanced Redundant Control) has developed a new system architecture that enables effective application of driver assisted systems in an X-by-wire powertrain. A major challenge in the conception of such a system is development of a reliable electrical energy supply. A simulation is the most important tool for enabling the fundamental aspects to work, as for example, a dimensioning of the powernet. This article explains our approach in this SPARC simulation. We provide suggestions through examples of how to find simulation solutions for powernet dimensioning, as well as for the conception and validation of energy management strategies.
Technical Paper

Process to Achieve NVH Goals: Subsystem Targets via “Digital Prototype” Simulations

1999-05-17
1999-01-1692
A process to achieve vehicle system level NVH objectives using CAE simulation tools is discussed. Issues of modeling methodology, already covered adequately in the literature, are less emphasized so that the paper can focus on the application of a process that encompasses objective setting, design synthesis, and performance achievement using simulation predictions. A reference simulation model establishes correlation levels and modeling methods that are applied to future predictions. The new model, called a “Digital Mule”, is an early new product “design intent” simulation used to arrive at subsystem goals to meet the vehicle level NVH objectives. Subsystem goals are established at discrete noise paths where structure borne noise enters the body subsystem. The process also includes setting limits on the excitation sources, such as suspension and powertrain.
X