Refine Your Search

Search Results

Viewing 1 to 11 of 11
Technical Paper

A New Calibration System for the Daimler Chrysler Medium and Heavy Duty Diesel Engines - An Exercise in Methods & Tools

2001-03-05
2001-01-1222
High demands in fuel consumption, efficiency, and low emissions lead to complex control functions for current and future diesel engine management systems. Great effort is necessary for their optimal calibration. At the same time, and particularly for cost reasons, many variants exist on one individual type of diesel engine management system. Not only is it used for several base engines, but these engines are also used in different environments and for different tasks. For optimal deployment, their calibration status must also be optimized individually. Furthermore, the demand for shorter development cycles and enhanced quality lead to a catalogue of new requirements for the calibration process and the affiliated tool. A new calibration system was developed, which optimally reflects the new demands.
Technical Paper

Aftertreatment Catalyst Design for the New DaimlerChrysler Supercharged 4-Cylinder Engine with Direct Gasoline Injection

2003-03-03
2003-01-1161
The launching of direct injection gasoline engines is currently one of the major challenges for the automotive industry in the European Union. Besides its potential for a notable reduction of fuel consumption, the engine with direct gasoline injection also offers increased power during stoichiometric and stratified operation. These advantages will most probably lead to a significant market potential of the direct injection concept in the near future. In order to meet the increasingly more stringent European emission levels (EURO IV), new strategies for the exhaust gas aftertreatment are required. The most promising technique developed in recent years, especially for NOx conversion in lean exhaust gases, is the so-called NOx storage catalyst.
Technical Paper

An Advanced Diesel Fuels Test Program

2001-03-05
2001-01-0150
This paper reports on DaimlerChrysler's participation in the Ad Hoc Diesel Fuels Test Program. This program was initiated by the U.S. Department of Energy and included major U.S. auto makers, major U.S. oil companies, and the Department of Energy. The purpose of this program was to identify diesel fuels and fuel properties that could facilitate the successful use of compression ignition engines in passenger cars and light-duty trucks in the United States at Tier 2 and LEV II tailpipe emissions standards. This portion of the program focused on minimizing engine-out particulates and NOx by using selected fuels, (not a matrix of fuel properties,) in steady state dynamometer tests on a modern, direct injection, common rail diesel engine.
Technical Paper

Cam-Phasing Optimization Using Artificial Neural Networks as Surrogate Models-Maximizing Torque Output

2005-10-24
2005-01-3757
Variable Valve Actuation (VVA) technology provides high potential in achieving high performance, low fuel consumption and pollutant reduction. However, more degrees of freedom impose a big challenge for engine characterization and calibration. In this study, a simulation based approach and optimization framework is proposed to optimize the setpoints of multiple independent control variables. Since solving an optimization problem typically requires hundreds of function evaluations, a direct use of the high-fidelity simulation tool leads to the unbearably long computational time. Hence, the Artificial Neural Networks (ANN) are trained with high-fidelity simulation results and used as surrogate models, representing engine's response to different control variable combinations with greatly reduced computational time. To demonstrate the proposed methodology, the cam-phasing strategy at Wide Open Throttle (WOT) is optimized for a dual-independent Variable Valve Timing (VVT) engine.
Technical Paper

Cam-phasing Optimization Using Artificial Neural Networks as Surrogate Models-Fuel Consumption and NOx Emissions

2006-04-03
2006-01-1512
Cam-phasing is increasingly considered as a feasible Variable Valve Timing (VVT) technology for production engines. Additional independent control variables in a dual-independent VVT engine increase the complexity of the system, and achieving its full benefit depends critically on devising an optimum control strategy. A traditional approach relying on hardware experiments to generate set-point maps for all independent control variables leads to an exponential increase in the number of required tests and prohibitive cost. Instead, this work formulates the task of defining actuator set-points as an optimization problem. In our previous study, an optimization framework was developed and demonstrated with the objective of maximizing torque at full load. This study extends the technique and uses the optimization framework to minimize fuel consumption of a VVT engine at part load.
Technical Paper

DaimlerChrysler's New 1.6L, Multi-Valve 4-Cylinder Engine Series

2001-03-05
2001-01-0330
This paper introduces the new 1.6L engine family, designed and developed by the Chrysler group of DaimlerChrysler Corporation in cooperation with BMW. An overview of the engine's design features is provided, with a detailed review of the performance development process with emphasis on airflow, combustion, thermal management and friction. This information is presented, to provide an understanding of how the engine simultaneously achieves outstanding levels of torque, power, fuel consumption, emissions and idle stability. The use of analytical tools such as Computational Fluid Dynamics (CFD) and Finite Element Analysis (FEA) in the optimization of the engine is shown.
Technical Paper

Development of an Engine Test Cell for Rapid Evaluation of Advanced Powertrain Technologies using Model-Controlled Dynamometers

2006-04-03
2006-01-1409
Current engine development processes typically involve extensive steady-state and simple transient testing in order to characterize the engine's fuel consumption, emissions, and performance based on several controllable inputs such as throttle, spark advance, and EGR. Steady-state and simple transient testing using idealistic load conditions alone, however, is no longer sufficient to meet powertrain development schedule requirements. Mapping and calibration of an engine under transient operation has become critically important. And, independent engine development utilizing accelerated techniques is becoming more attractive. In order to thoroughly calibrate new engines in accelerated fashion and under realistic transient conditions, more advanced testing is necessary.
Technical Paper

HSDI Diesel Engine Optimisation for GTL Diesel Fuel

2007-01-23
2007-01-0027
A Mercedes E320 CDI vehicle has been modified for more optimal operation on Gas-To-Liquids (GTL) diesel fuel, in order to demonstrate the extent of exhaust emission reductions which are enabled by the properties of this fuel. The engine hardware changes employed comprised the fitment of re-specified fuel injectors and the reduction of the compression ratio from 18:1 to 15:1, as well as a re-optimisation of the software calibration. The demonstration vehicle has achieved a NOx emission of less that 0.08 g/km in the NEDC test cycle, while all other regulated emissions still meet the Euro 4 limits, as well as those currently proposed for Euro 5. CO2 emissions and fuel consumption, were not degraded with the optimised engine. This was achieved whilst employing only cost-neutral engine modifications, and with the standard vehicle exhaust system (oxidation catalyst and diesel particulate filter) fitted.
Technical Paper

Potential of Common Rail Injection System for Passenger Car DI Diesel Engines

2000-03-06
2000-01-0944
The improvement of DI diesel engines for passenger cars to fulfil pollutant emission limits and lower fuel consumption and noise is closely linked to continued development of the injection system. Today's injection systems demonstrate varying potential in terms of the flexibility of injection parameters for improving mixture formation and combustion. DaimlerChrysler evaluated the potential of different injection systems, looking particularly at the distributor pump, unit injection system and Common Rail system. Based on the results of these investigations, the Common Rail system was selected. The tests presented in this paper were performed on a single-cylinder engine with Common Rail system. They focused on increased rail pressure in combination with different nozzle geometries. The results show significant benefits in NOx/smoke trade off at part load conditions with high EGR rate.
Technical Paper

Potential of Synthetic Fuels in Future Combustion Systems for HSDI Diesel Engines

2006-04-03
2006-01-0232
In view of limited crude oil resources, alternative fuels for internal combustion engines are currently being intensively researched. Synthetic fuels from natural gas offer a promising interim option before the development of CO2-neutral fuels. Up to a certain degree, these fuels can be tailored to the demands of modern engines, thus allowing a concurrent optimization of both the engine and the fuel. This paper summarizes investigations of a Gas-To-Liquid (GTL) diesel fuel in a modern, post-EURO 4 compliant diesel engine. The focus of the investigations was on power output, emissions performance and fuel economy, as well as acoustic performance, in comparison to a commercial EU diesel fuel. The engine investigations were accompanied by injection laboratory studies in order to assist in the performance analyses.
Technical Paper

Vehicle Speed Prediction for Driver Assistance Systems

2004-03-08
2004-01-0170
A predictive automatic gear shift system is currently under development. The system optimizes the gear shift process, taking the conditions of the road ahead into account, such that the fuel consumption is minimized. An essential part of the system is a module that predicts the vehicle speed dynamics: This calculates a speed trajectory, i.e. the most probable vehicle speed the driver will desire for the upcoming section of the route. In the paper the theoretical background for predicting the vehicle speed, and simulation results of the predictive shift algorithm are presented.
X