Refine Your Search

Topic

Search Results

Technical Paper

A Grammatical Evolution Approach to System Identification of Laser Lap Welding

2006-04-03
2006-01-1614
Laser lap welding quality is a non-linear response based on a host of categorical and numeric material and process variables. This paper describes a Grammatical Evolution approach to the structure identification of the laser lap welding process and compares its performance with linear regression and a neuro-fuzzy inference system.
Technical Paper

A New Method for Obtaining FRF of a Structure in Area Where Impact Hammer Cannot Reach

2007-05-15
2007-01-2385
The Frequency Response Function (FRF) is a fundamental component to identifying the dynamic characteristics of a system. FRF's have a significant impact on modal analysis and root cause analysis of NVH issues. In most cases the FRF can be easily measured, but there are instances when the measurement is unobtainable due to spatial constraints. This paper outlines a simple experimental method for obtaining a high quality input-output FRF of a structure in areas where an impact hammer can not reach during impact testing. Traditionally, the FRF in such an area is obtained by using a load cell extender with a hammer impact excitation. A common problem with this device is a double hit, that yields unacceptable results.
Technical Paper

A New Way of Electrical/Electronic Systems Endurance Testing of Vehicles in a Real World Environment Prior to Production Launch

2001-03-05
2001-01-1101
With the increasing emphasis on Systems Engineering, there is a need to ensure that Electrical/Electronic (E/E) Systems Endurance Testing of vehicles, in a real world environment, prior to Production Launch, is performed in a manner and at a technological level that is commensurate with the high level of electronics and computers in contemporary vehicles. Additionally, validating the design and performance of individual standalone electronic systems and modules “on the bench” does not guarantee that all the permutations and combinations of real-world hardware, software, and driving conditions are taken into account. Traditional Proving Ground (PG) vehicle testing focuses mainly on powertrain durability testing, with only a simple checklist being used by the PG drivers as a reminder to cycle some of the electrical components such as the power window switches, turn signals, etc.
Technical Paper

Development of Portable Self Contained Phase Shifting Digital Shearography for Composite Material Testing

2005-04-11
2005-01-0590
The use of composite materials in the automotive industry has become increasingly widespread. With this increase in use, techniques for non-destructive testing (NDT) have become more and more important. Various optical NDT inspective methods such as holography, moiré techniques, and shearography have been used for material testing. Among these methods, shearography appears to be most practical. Shearography has a simple optical setup due to its “self-referencing” system, and it is relatively insensitive against rigid-body motions. Measurements of displacement derivatives, and thus strain directly, rather than the displacement itself is achieved through this method. Therefore shearography detects defects in objects by correlating anomalies of strain which are usually easier than correlating the anomalies of the displacement itself, as in holography. To date shearography has shown potential as a NDT tool for identifying defects in small structures.
Technical Paper

Development of a Computerized Digital Resonance Fatigue Test Controller with Load Feedback Management

2006-04-03
2006-01-1620
In this report, the DCX Stress Lab and the Tool Development & Test Support groups investigated automating a resonant bending crankshaft fatigue test. Fatigue testing, in general, is a laborious process since many samples are needed for analysis. This makes development cost and speed dependant on the component test efficiency. In the case of crankshaft resonant bending testing, both cost and speed are influenced by the manual feedback operation needed to run the current procedure. In order to increase the efficiency of this process, this project sought to automate the following tasks: maintaining the load on the part, reacting to resonance changes in the part, mapping resonance changes, logging the number of cycles, and discerning resonance frequency shift failure modes objectively.
Technical Paper

Development of an Engine Test Cell for Rapid Evaluation of Advanced Powertrain Technologies using Model-Controlled Dynamometers

2006-04-03
2006-01-1409
Current engine development processes typically involve extensive steady-state and simple transient testing in order to characterize the engine's fuel consumption, emissions, and performance based on several controllable inputs such as throttle, spark advance, and EGR. Steady-state and simple transient testing using idealistic load conditions alone, however, is no longer sufficient to meet powertrain development schedule requirements. Mapping and calibration of an engine under transient operation has become critically important. And, independent engine development utilizing accelerated techniques is becoming more attractive. In order to thoroughly calibrate new engines in accelerated fashion and under realistic transient conditions, more advanced testing is necessary.
Technical Paper

Front Impact Pulse Severity Assessment Methodology

2005-04-11
2005-01-1416
The pulse severities from various vehicle impact tests need to be assessed during the impact structure development and targeting stage to assure that the occupants can meet the injury criteria as required. The conventional method using TTZV (time to zero velocity), TDC (total dynamic crush), and G1/G2 (two stage averaged pulse) is often unable to give a quick and clear answer to the question being raised. A simple numerical tool is developed here to assess the pulse severity with a single parameter in which the severity is expressed as the amount of chest travel under a certain target restraint curve or chest A-D curve. The tool is applied to several front impact vehicle pulses to show the effectiveness. The new method developed here can be used to assess the pulse severity in an easy and objective way along with conventional parameters.
Technical Paper

Grammatical Evolution Based Tool for Predicting Multivariable Response Surface for Laser Lap Welding

2008-04-14
2008-01-1372
The problem of predicting the quality of weld is critical to manufacturing. A great deal of data is collected under multiple conditions to predict the quality. The data generated at Daimler Chrysler has been used to develop a model based on grammatical evolution. Grammatical Evolution Technique is based on Genetic Algorithms and generates rules from the data which fit the data. This paper describes the development of a software tool that enables the user to choose input variables such as the metal types of top and bottom layers and their thickness, intensity and speed of laser beam, to generate a three dimensional map showing weld quality. A 3D weld quality surface can be generated in response to any of the two input variables picked from the set of defining input parameters. This tool will enable the user to pick the right set of input conditions to get an optimal weld quality. The tool is developed in Matlab with Graphical User Interface for the ease of operation.
Technical Paper

Laboratory Experience with the IR-TRACC Chest Deflection Transducer

2002-03-04
2002-01-0188
In 1998, Rouhana et al. described development of a new device, called the IR-TRACC (InfraRed - Telescoping Rod for Assessment of Chest Compression). In its original concept, the IR-TRACC uses two infrared LEDs inside of a telescoping rod to measure deflection. One LED serves as a light transmitter and the other as a light receiver. The output from the receiver LED is converted to a linear function of chest compression using an analog circuit. Tests have been performed with IR-TRACC units at various labs around the world since 1998. A first-generation IR-TRACC system was retrofit into a Q3 dummy by TNO. Similarly, a mid sized male Hybrid III dummy thorax and a small female Hybrid III dummy thorax have been designed by First Technology Safety Systems (FTSS) such that each contains 4 second-generation IR-TRACC units. The second-generation IR-TRACC is the result of continued development by FTSS, especially in the areas of the analysis circuit, manufacturing and calibration methods.
Technical Paper

Laminar Flow Whistle on a Vehicle Side Mirror

2007-04-16
2007-01-1549
In the development of several outside mirror designs for vehicles, a high frequency noise (whistling) phenomenon was experienced. First impression was that this might be due to another source on the vehicle (such as water management channels) or a cavity noise; however, upon further investigation the source was found to be the mirror housing. This “laminar whistle” is related to the separation of a laminar boundary layer near the trailing edges of the mirror housing. When there is a free stream impingement on the mirror housing, the boundary layer starts out as laminar, but as the boundary layer travels from the impingement point, distance, speed, and roughness combine to trigger the transition turbulent. However, when the transition is not complete, pressure fluctuations can cause rapidly changing flow patterns that sound like a whistle to the observer. Because the laminar boundary layer has very little energy, it does not allow the flow to stay attached on curved surfaces.
Technical Paper

Laminated Steel Forming Modeling Techniques and Experimental Verifications

2003-03-03
2003-01-0689
Laminated steel sheets sandwiched with a polymer core are increasingly used for automotive applications due to their vibration and sound damping properties. However, it has become a major challenge in finite element modeling of laminated steel structures and forming processes due to the extremely large differences in mechanical properties and in the gauges of the polymer core and the steel skins. In this study, circular cup deep drawing and V-bending experiments using laminated steels were conducted in order to develop a modeling technique for laminate forming processes. The effectiveness of several finite element modeling techniques was investigated using the commercial FEM code LS-Dyna. Furthermore, two production parts were selected to verify the modeling techniques in real world applications.
Technical Paper

Measurement of Transfer Case Imbalance

2005-05-16
2005-01-2297
Different methodologies to test transfer case imbalance were investigated in this study. One method utilized traditional standard single plane and two plane methods to measure the imbalance of the transfer case when running it on a dynamic balance machine at steady RPM, while a second method utilized accelerometers and a laser vibrometer to measure vertical vibration on the transfer case when running it on a dynamic balance machine in 4 Hi open mode during a run up from 1000 to 4000 RPM with a 40 RPM difference between the input and output shaft speeds. A comparison of all of the measurements for repeatability and accuracy was done with the goal of determining an appropriate and efficient method that generates the most consistent results. By using the traditional method, the test results were not repeatable. This may be due to the internal complexity of transfer cases. With the second method, good correlation between the measurements was obtained.
Technical Paper

Modal Overlap at Low Frequencies - A Stochastic Approach for Vehicle System Modal Management

2003-05-05
2003-01-1612
In the early stages of a vehicle program, it is a common practice to set target ranges for the global body, suspension and powertrain modes. This modal management process allows engineers to avoid potential noise and vibration problems stemming from strong overlap of major global modes. Before the first prototype hardware is built, finite element models of the body, suspension and powertrain are usually exercised to compare predicted versus targeted ranges of the major system modes in the form of a modal management chart. However, uncertainty associated with the design parameters, manufacturing process and other sources can lead to a major departure from the design intent when the first hardware prototype is built. In this study, a first order reliability method is used to predict variance of the eigen values due to parameter uncertainties. This allows the CAE engineers to add a “three sigma” bound on the eigen values reported in the modal management chart.
Technical Paper

Multi-Mannequin Coordination and Communication in Digital Workcells

2003-06-17
2003-01-2197
It is commonly known that in an automotive manufacturing assembly line several workers perform either a common task or a number of different tasks simultaneously, and there is a need to represent such a multi-worker operation realistically in a digital environment. In the past years, most digital human modeling applications were limited only in a single worker case. This paper presents how to simulate multi-worker operations in a digital workcell. To establish an effective communication and interaction between the mannequins, some existing commercial software package has provided a digital input/output mechanism. The motion for each mannequin is often programmed independently, but can be interrupted anytime by the other digital human models or devices via a communication channel.
Technical Paper

Press-Line Simulation in Stamping Process

2004-03-08
2004-01-1047
The automotive industry is rapidly implementing computer simulation in every aspect of their processes mainly to decrease the time required to bring new models to market. Computer simulation can also be used to reduce the cost of vehicle development and manufacturing. A major portion of the manufacturing cost associated with automotive stamping lies in the process design, build and tryout of production dies and in automation of the transfer equipment. Press home-line tryout is largely a trial-and-error process relying heavily on the skills and experience of tool and die makers. To reduce this dependence on human skills and effort, press-line simulation can be effectively utilized to verify the design accuracy thereby reducing the changes needed to rework the production die/tool. The entire press-line with all its complete accessories can be modeled and checked for design errors similar to the try-out conducted in the production plant.
Technical Paper

Representation of Constrained/Unconstrained Layer Damping Treatments in FEA/SEA Vehicle System Models: A Simplified Approach

1999-05-17
1999-01-1680
In this study, a simplified approach to modeling the dynamics of damping treatments in FEA (Finite Element)/ SEA (Statistical Energy) models is presented. The basic idea is to represent multi-layered composite structures with an equivalent layer. The properties of the equivalent layer are obtained by using the RKU (Ross, Kerwin and Ungar) method. The procedure presented here does not require any special pre-processing of the finite element input file and it does not increase the number of active degrees of freedom in the model, thereby making it possible to include the effect of these treatments in large system/subsystem level models. The equivalent properties obtained from RKU analysis can also be used in the SEA system models. In this study, both unconstrained and constrained layer damping treatments applied to simple structures (e.g., flat panels) as well as production vehicle components are examined.
Technical Paper

Sensitivity Analysis of Powertrain Cooling System Performance

2007-04-16
2007-01-0598
This paper identifies the difference in powertrain cooling system content levels using a nominal and a +3 Standard deviation maximum temperature design approach. Variation simulation analysis tools are used along with a 1-D cooling system performance model to predict resulting temperature distribution for different combinations of input variable populations. The analysis will show differential in powertrain cooling system content, mass, and impact to fuel economy for a nominal vs. +3 sigma design approach.
Technical Paper

Simulation of Hot Stamping Process With Advanced Material Modeling

2004-03-08
2004-01-0168
Advanced material modeling was conducted to describe the thermal-mechanical behavior of Boron Steel during hot stamping, a process in which blanks at 900 °C are formed and quenched between cold dies. Plastic deformation, thermal dilatation and phase transformation were incorporated in the constitutive model and a user-defined subroutine was developed to interface with LS-DYNA. Simulation was conducted on the hot stamping process of a door intrusion beam to gain insight into the physics of the process. Results showed significant influence of the thermal cycle on final product. It was also demonstrated that the program developed can be used as an early feasibility tool to determine baseline processing parameters and to detect potential defects in products without physical prototyping.
Technical Paper

Springback Study on a Stamped Fender Outer

2003-03-03
2003-01-0685
Springback study on a Dodge Ram fender outer panel is detailed in this paper. A simple measurement fixture is designed for the panel, wherein non-contact laser scan technology is applied The measurement data are compared with the original CAD design surface and deviation contour maps are obtained. Consistency of measurement is studied at different sections among three samples. Details of FEA simulations are outlined. The comparison between measurement and simulation prediction is summarized. A method to describe the consistency of measurement and the accuracy of simulation prediction is proposed. The targets for measurement consistency and simulation accuracy are verified. A sensitivity analysis is also performed to investigate various simulation input parameters.
Technical Paper

Step-Stress Accelerated Test Method – A Validation Study

2003-03-03
2003-01-0470
Most products are designed to operate for a long period of time, and in such case, life testing is a relatively lengthy procedure. Lengthy tests tend to be expensive and the results become available too late to be of much use. To reduce the experimental cost significantly and provide an efficient tool to assess the life distribution for highly reliable product, a step-stress accelerated test (SSAT) was developed. An example of a rear suspension aft lateral link is used to validate the SSAT method.
X