Refine Your Search

Topic

Author

Search Results

Technical Paper

A Study of Material Compatibility With Deionized Water

2003-03-03
2003-01-0804
Deionized (DI) water is being used for humidification and cooling on some fuel cell designs. This highly purified water is corrosive, yet the high purity is required to maintain the function and durability of the fuel cell. A study of the deionized water system was undertaken to determine the effect of various materials on water quality, and also to determine the effect of deionized water on each material. The test setup was designed to circulate fluid from a reservoir, similar to an actual application. The fluid temperature, pressure, and flow rate were controlled. The resistivity of the water was observed and recorded. Pre- and post-testing of the water and the materials was performed. The goal is to achieve system cleanliness and durability similar to a stainless steel system using lighter, less expensive materials. This paper describes the test setup, test procedures, and the overall results for the eight materials tested.
Technical Paper

A Study of the Effect of Multiple Braze Furnace Exposures on 304L Stainless Steel Copper-Brazed Assemblies

2004-03-08
2004-01-1236
The effect of multiple braze furnace exposures has been questioned by many because the rework of brazed parts is a common practice in manufacturing. However, there are process controls that limit the number of exposures for an assembly due to known issues with multiple exposures. A common concern deals with the effect of multiple braze furnace exposures on the structural integrity of the base material of the components. Another concern regards the effect of multiple exposures on the structural integrity of the braze joint itself. This paper details experimental results of a physical study to investigate these questions. The material forms used are seam-welded tube and a thin-wall stamped component, both made from 304L stainless steel. The copper paste used in the study has an industry designation of ANSI/AWS A5.8 - BCu-1a.
Technical Paper

Advanced Development of the Direct Osmotic Concentration System

2008-06-29
2008-01-2145
Direct osmotic concentration (DOC) is an integrated membrane treatment process designed for the reclamation of spacecraft wastewater. The system includes forward osmosis (FO), membrane evaporation, reverse osmosis (RO) and an aqueous phase catalytic oxidation (APCO) post-treatment unit. This document describes progress in the third year of a four year project to advance hardware maturity of this technology to a level appropriate for human rated testing. The current status of construction and testing of the final deliverable is covered and preliminary calculations of equivalent system mass are funished.
Technical Paper

Atmospheric Pressure Microwave Plasma P/M Sintering of Cam Lobes

2005-04-11
2005-01-0720
A new proprietary Atmospheric Pressure Microwave Plasma Technology, developed for various materials processing applications, has been applied to P/M sintering of cam lobes. The aims were a) to compare the new processing route with conventional process for the same alloy composition and b) to check the possibility of successful sintering at higher temperatures so that different higher temperature P/M alloys may be used. P/M green cam lobes were used, and sintering runs were carried out initially at temperatures comparable to that currently used in the conventional processes; this was followed by runs at higher temperatures that are not very practical in the conventional processing route due to equipment component constraints. Properties such as density and hardness were measured for the sintered samples, together with corresponding microstructural analysis.
Journal Article

Bake Hardening Behavior of DP, TBF, and PHS Steels with Ultimate Tensile Strengths Exceeding 1 GPa

2020-04-14
2020-01-0536
Third generation advanced high strength steels (AHSS) have been developed combining high strength and formability, allowing for lightweighting of vehicle structural components. These AHSS components are exposed to paint baking operations ranging in time and temperature to cure the applied paint. The paint baking treatment, combined with straining induced from part forming, may lead to increased in-service component performance due to a strengthening mechanism known as bake hardening. This study aims to quantify the bake hardening behavior of select AHSS grades. Materials investigated were press hardenable steels (PHS) 1500 and 2000; transformation induced plasticity (TRIP) aided bainitic ferrite (TBF) 1000 and 1200; and dual phase (DP) 1000. The number designations of these grades refer to minimum as-received ultimate tensile strengths in MPa. Paint baking was simulated using industrially relevant times and temperatures from 15 to 60 min and 120 to 200 °C, respectively.
Technical Paper

Bending Fatigue Crack Characterization and Fracture Toughness of Gas Carburized SAE 4320 Steel

1992-02-01
920534
Crack initiation and propagation in an SAE 4320 steel gas carburized to a 1.0 mm case depth was examined in specimens subjected to bending fatigue. Cellulose acetate replicas of incrementally loaded specimens showed that small, intergranular cracks were initiated during static loading to stress levels just above the endurance limit. The intergranular cracks arrest and serve as initiation sites for semi-elliptical, transgranular fatigue crack propagation. The maximum depth of stable crack propagation was between 0.17 and 0.23 mm, a depth which corresponds to the maximum hardness of the carburized case. Three equations which provide approximations to the stress distribution in the fatigue specimens were used to calculate KIC for the carburized case with values of maximum applied stress and measured stable crack geometry.
Technical Paper

Bending Fatigue Life Analysis of Carburized Components Using Strain Life and Fracture Mechanics Approaches

2003-03-03
2003-01-1307
Axle primary gearing is normally carburized for high and balanced resistance to contact fatigue, wear, bending fatigue, and impact loading. The focus of this work is on bending fatigue which is a key design consideration of automotive and commercial vehicle axle gearing. Since a carburized component is basically a composite material with steep gradients in carbon content, hardness, tensile strength and microstructure from surface to the middle of the cross section combined with non-linear residual stress, its bending fatigue life prediction is a complex and challenging task. Many factors affect the bending fatigue performance of axle gearing, such as gear design, gear manufacturing, loading history during service, residual stress distribution, steel grade, and heat treatment. In this paper, the general methodology for bending fatigue life prediction of a carburized component is investigated. Carburized steel composites are treated as two homogeneous materials: case and core.
Technical Paper

Bending Fatigue Performance of Carburized 4320 Steel

1993-03-01
930963
The bending fatigue performance of four heats of carburized, commercially-produced SAE 4320 steel was evaluated. Simulated gear tooth in bending (SGTB) cantilever beam specimens from each heat were identically carburized and fatigue tested in the direct quenched condition after carburizing. The microstructure and fracture surfaces of all specimens were characterized with light and electron microscopy. The four direct quenched sets of specimens performed similarly in low cycle fatigue. Endurance limits among the direct quenched specimens ranged between 1100 and 1170 MPa (160 and 170 ksi) and intergranular cracking dominated fatigue crack initiation. An additional set of specimens from one of the heats was reheated after carburizing. The fatigue performance of the reheated specimens was superior to that of the direct quenched specimens in both the low and high cycle regions. The effects of inclusion content, microstructure, and residual stresses on fatigue performance are discussed.
Technical Paper

Bending Fatigue Performance of Gas- and Plasma-Carburized Steels

1999-03-01
1999-01-0602
This study evaluated the bending fatigue performance of a modified SAE 4320 steel as a function of carburizing technique. S-N curves and endurance limits were established by fatigue testing modified Brugger-type specimens that are designed to simulate a single gear tooth. Fractured specimens were examined by light and electron microscopy to determine crack initiation sites, establish the extent of stable crack propagation, and analyze surface oxide types and distributions. Test results show that plasma-carburizing boosted the endurance limit of an oxidation-susceptible gear steel from 1100 MPa to 1375 MPa. Fatigue endurance limits in excess of 1400 MPa had previously been achieved in gas-carburized SAE 4320 steels by reheat treatments and reductions in high-oxidation potential elements. The level of improvement observed in this study suggests that any of these advanced processing techniques can allow significant size reductions and weight savings in automotive transmission gears.
Technical Paper

CAE approach for Plastic Valve Cover System- Part 2

2006-04-03
2006-01-0827
The Plastic Valve Cover System (PVCS) should provides a leak proof seal to the cylinder head under engine temperature, isolate the vibrations transmitted from the engine through the cover to the environment, control the crankcase pressure and house the device to separate oil from the blow-by gas. In order to increase the stiffness of PVCS, short glass fibers and minerals are added during the injection molding of the plastic valve cover. The presence of the fibers results in a component with highly anisotropic thermo-mechanical properties that was not accounted in the previously approach [1]. This paper describes the updated CAE approach with the incorporation of the short fiber anisotropy into the design of cylinder head valve covers.
Journal Article

Carbon and Manganese Effects on Quenching and Partitioning Response of CMnSi-Steels

2015-04-14
2015-01-0530
Quenching and partitioning (Q&P) is a novel heat treatment to produce third generation advanced high-strength steels (AHSS). The influence of carbon on mechanical properties of Q&P treated CMnSi-steels was studied using 0.3C-1.5Mn-1.5Si and 0.4C-1.5Mn-1.5Si alloys. Full austenitization followed by two-step Q&P treatments were conducted using varying partitioning times and a fixed partitioning temperature of 400 °C. The results were compared to literature data for 0.2C-1.6Mn-1.6Si, 0.2-3Mn-1.6Si and 0.3-3Mn-1.6Si Q&P treated steels. The comparison showed that increasing the carbon content from 0.2 to 0.4 wt pct increased the ultimate tensile strength by 140 MPa per 0.1 wt pct C up to 1611 MPa without significantly decreasing ductility for the partitioning conditions used. Increased alloy carbon content did not substantially increase the retained austenite fractions. The best combinations of ultimate tensile strength and total elongation were obtained using short partitioning times.
Technical Paper

Carbon and Sulfur Effects on Performance of Microalloyed Spindle Forgings

1993-03-01
930966
Five heats of vanadium-microalloyed steel with carbon contents from 0.29% to 0.40% and sulfur contents from 0.031% to 0.110% were forged into automotive spindles and air cooled. Three of the steels were continuously cast whereas the other two were ingot cast. The forged spindles were subjected to microstructural analysis, mechanical property testing, full component testing and machinability testing. The microstructures of the five steels consisted of pearlite and ferrite which nucleated on prior austenite grain boundaries and predominantly on intragranularly dispersed sulfide inclusions of the resulfurized grades. Ultimate tensile strengths and room temperature Charpy V-notch impact toughness values were relatively insensitive to processing and compositional variations. The room temperature tensile and room-temperature impact properties ranged from 820 MPa to 1000 MPa (120 to 145 ksi) and from 13 Joules to 19 Joules (10 to 14 ft-lbs), respectively, for the various steels.
Journal Article

Characterization of Advanced High Strength Steel Sheets in View of the Numerical Prediction of Sidewall Curl

2013-01-21
2012-01-2326
In this study, a procedure for characterizing advanced high strength steel sheets is presented in view of determining the material parameters for constitutive models that can be used for accurate prediction of springback and sidewall curl. The mechanical properties of DP980 and TRIP780 sheets were obtained experimentally, and their cyclic tension-compression behaviour was modeled with the Chaboche nonlinear kinematic hardening model and the Yoshida-Uemori two-surface plasticity model that are implemented in LS-DYNA. The unloading moduli were determined from monotonic tension tests at various prestrain levels. An inverse approach based on linear and quadratic response surfaces created by Sequential Strategy with Domain Reduction (SRSM) methodology using LS-OPT software was used and investigated to identify specific material parameters in each constitutive model.
Technical Paper

Characterize the High-Frequency Dynamic Properties of Elastomers Using Fractional Calculus for FEM

2007-05-15
2007-01-2417
Finite element modeling has been used extensively nowadays for predicting the noise and vibration performance of whole engines or subsystems. However, the elastomeric components on the engines or subsystems are often omitted in the FE models due to some known difficulties. One of these is the lack of the material properties at higher frequencies. The elastomer is known to have frequency-dependent viscoelasticity, i.e., the dynamic modulus increases monotonically with frequency and the damping exhibits a peak. These properties can be easily measured using conventional dynamic mechanical experiments but only in the lower range of frequencies. The present paper describes a method for characterizing the viscoelastic properties at higher frequencies using fractional calculus. The viscoelastic constitutive equations based on fractional derivatives are discussed. The method is then used to predict the high frequency properties of an elastomer.
Technical Paper

Combined Synchrotron X-Ray Diffraction and Digital Image Correlation Technique for Measurement of Austenite Transformation with Strain in TRIP-Assisted Steels

2016-04-05
2016-01-0419
The strain-induced diffusionless shear transformation of retained austenite to martensite during straining of transformation induced plasticity (TRIP) assisted steels increases strain hardening and delays necking and fracture leading to exceptional ductility and strength, which are attractive for automotive applications. A novel technique that provides the retained austenite volume fraction variation with strain with improved precision is presented. Digital images of the gauge section of tensile specimens were first recorded up to selected plastic strains with a stereo digital image correlation (DIC) system. The austenite volume fraction was measured by synchrotron X-ray diffraction from small squares cut from the gage section. Strain fields in the squares were then computed by localizing the strain measurement to the corresponding region of a given square during DIC post-processing of the images recorded during tensile testing.
Technical Paper

Comparison of Hole Expansion Properties of Quench & Partitioned, Quench & Tempered and Austempered Steels

2012-04-16
2012-01-0530
Quenching & Partitioning (Q&P) is receiving increased attention as a novel Advanced High Strength Steel (AHSS) processing route as promising tensile properties of the “third generation” have been reported. The current contribution reports hole expansion ratios (HER) of Q&P steels and compares the values with HERs obtained for “conventional” AHSS processing routes such as austempering and Quench & Tempering (Q&T). Intercritically annealed C-Mn-Al-Si-P and fully austenitized C-Mn-Si microstructures were studied. Optimum combinations of tensile strength and HER were obtained for fully austenitized C-Mn-Si Q&P samples. Higher HER values were obtained for Q&P than for Q&T steels for similar tempering/partitioning temperatures. Austempering following intercritical annealing results in higher HER than Q&P at similar tensile strength levels. In contrast, Q&P following full austenitization results in higher hole expansion than austempering even at higher strength levels.
Technical Paper

Comparison of Single Gear Tooth and Cantilever Beam Bending Fatigue Testing of Carburized Steel

1995-02-01
950212
The bending fatigue performance of gears, cantilever beam specimens, and notched-axial specimens were evaluated and compared. Specimens were machined from a modified SAE-4118 steel, gas-carburized, direct-quenched and tempered. Bending fatigue specimens were characterized by light metallography to determine microstructure and prior austenite grain size, x-ray analysis for residual stress and retained austenite measurements, and scanning electron microscopy to evaluate fatigue crack initiation, propagation and overload. The case and core microstructures, prior austenite grain sizes and case hardness profiles from the various types of specimens were similar. Endurance limits were determined to be about 950 MPa for both the cantilever beam and notched-axial fatigue specimens, and 1310 MPa for the single gear tooth specimens.
Technical Paper

Contact Fatigue Tests and Contact Fatigue Life Analysis

2005-04-11
2005-01-0795
The main objective of this paper is to investigate contact fatigue life models and to evaluate the effect of surface finish on contact fatigue life. The effect of surface finish on contact fatigue life was investigated experimentally using two roller contact fatigue tests. The test samples, i.e. rollers, were carburized, quenched and then tempered. Two different roller surface finishes were evaluated: machined and as heat-treated surface (baseline rough surface) vs. super finished surface (smooth). Because many factors are involved in sliding/rolling contact fatigue, contact fatigue modeling is still in the early development stage. In this work, we will analyze our contact fatigue test results and correlate contact fatigue life with several empirical contact fatigue models, such as the lambda ratio, a new surface texture parameter, and a normalized pitting model which includes Hertzian Stress, sliding, surface roughness and oil film thickness.
Technical Paper

Contact Fatigue Tests and Life Simulations Using Computational Fracture Mechanics

2005-10-24
2005-01-3806
Computational fracture mechanics based FATIG3D program was used to simulate contact fatigue life of rough surface contacts in boundary to mixed lubrication regimes. Two-rollers contact fatigue tests were conducted and test results were compared with calculated contact fatigue lives. Calculated contact fatigue life agreed with test results well with the selected set of input data. The effect of several important parameters in the input data on contact fatigue life was evaluated computationally using FATIG3D. These parameters include: oil pressure distribution, crack face friction, direction of friction, friction coefficient, initial crack length, Hertzian stress, and residual stress distributions. The results obtained in this work improved basic understanding and the application of FATIG3D in simulating contact fatigue behavior.
Technical Paper

Cyclic Deformation, Fatigue and Fracture Toughness of a Nano-Composite High Strength Steel

2005-11-01
2005-01-3629
A nano-composite high strength (NCHS) steel was tested and evaluated in this work. Monotonic tension, strain controlled fatigue and fracture toughness tests were conducted at ambient temperature. Chemical composition, microstructure and fractography analysis were also performed. The NCHS steel showed excellent combination of high strength, high ductility and high fracture toughness with relatively low alloy content, compared with a S7 tool steel. Fatigue performance of the NCHS steel was also better than that of S7 tool steel. With the exceptional combination of high strength and high fracture toughness, the nano-composite high strength steel may have potential applications in gears, shafts, tools and dies where high fatigue performance, shock load resistance, wear and corrosion resistance is required.
X